

BETRIEBSANLEITUNG SERIE D.

ALLU.NET

ALLU Finland Oy | Jokimäentie 1, Fl-16320 Pennala, FINLAND Tel: +358 (0)3 882 140 | Fax: +358 (0)3 882 1440 | Email: info@allu.net

Inhaltsverzeichnis

1	Allş	gemeine Informationen	6
	1.1	Zweck der Betriebsanleitung	6
	1.2	Kennzeichnung	8
	1.3	Hersteller	8
	1.4	CE-Kennzeichnung und EG-Konformitätserklärung	8
	1.5	Inhalt der EG Konformitätserklärung	9
	1.6	Zweck der Anleitung	9
	1.6.	1 In dieser Anleitung erfasste Transformer-Modelle	10
	1.7	Urheberrecht	10
2	Sicl	nerheit und Umwelt	11
	2.1	Format der Sicherheitshinweise	11
	2.1.	1 Bedeutung der Symbole	12
	2.1.	2 Sicherheitshinweise auf dem Transformer	13
	2.2	Gefahrenzonen und Gefahren bei der Arbeit	14
	2.2.	1 Gefahrenzone I (5 m)	14
	2.2.	2 Gefahrenzone II (20 m)	16
	2.3	Gefahren bei Transport und Wartung	17
	2.3.	1 Umkippen/Herabfallen des Transformers	17
	2.3.	2 Flüssigkeit unter hohem Druck	17
	2.3.	3 Unbeabsichtigtes Anlaufen	18
	2.3.	4 Umweltschäden	18
	2.4	Aufgaben des Personals und allgemeine Sicherheitsanweisungen	19
	2.5	Zweckgemäßer Einsatz und Betriebsbedingungen	20
	2.5.	1 Zweckgemäßer Einsatz	20

	2.5.2	Betriebsbedingungen	20
	2.5.3	Nicht bestimmungsgemäßer oder unsachgemäßer Gebrauch	21
	2.5.4	Reparaturen und Modifikationen	21
3	Inbetr	iebnahme und Verwendung	22
3	3.1 T	ransport, Heben und Lagerung	22
	3.1.1	Transport	22
	3.1.2	Heben und Bewegen	22
	3.1.3	Langfristige Lagerung	25
3	3.2 A	anbau am Trägergerät	25
	3.2.1	Mechanischer Anbau und Adapter	25
	3.2.2	Adapterabbildungen	28
	3.2.3	Anbau am Trägergerät	29
	3.2.4	Anschluss und Anforderungen des Hydrauliksystems	30
3	3.3 V	orbereitung	36
	3.3.1	Übernahmeprüfung	36
3	3.4 E	Bedienung	36
	3.4.1	Grundlagen	36
	3.4.2	Inbetriebnahme	37
	3.4.3	ALLU-App und ALLU-Sensor	38
	3.4.4	Sachgemäßer Einsatz	40
	3.4.5	Unzulässige Arbeitsmethoden	42
4	Wartu	ng	45
2	4.1 R	Loutinewartung	47
	4.1.1	Tägliche Inspektion (8 Stdn.)	48
	4.1.2	Wöchentliche Inspektion (40 Std.)	48

	4.2	Umfassende Wartung
	4.3	Austausch von Verschleißteilen
	4.3.	Austausch der Schlegel (Modelle DN, DS und DH mit XHD-Wellen)55
	4.3.2	2 Austausch der Schlegel (Modelle DN, DS und DH mit X-Wellen)57
	4.3.3 Wel	Austausch der Kontramesser (Modelle DN, DS und DH mit XHD- und X-len)
	4.3.4	
	4.3.5	5 Austausch der Schlegel (TS-Serie)
	4.3.6	5 Austausch des Lagerschutzblechs
	4.3.7	Austausch der Wellen
	4.3.8	Aus- und Einbau von Lagern und Kettenrädern
	4.3.9	Wartung der Lagereinheit
	4.4	Störungsbeseitigung
	4.5	Entsorgung96
5	Tecl	nnische Beschreibung97
	5.1	Anbaumaße
	5.2	Abmessungen der Basisplatte
	5.2.	ALLU-Baggerbasisplatte (DN/DS/DH -09, -12 und -17, breite Modelle)100
	5.2.2	2 ALLU Radladerbasisplatte (DN-12 und -17, breite Modelle)101
	5.2.3	3 ALLU Radladerbasisplatte (DS/DH-12 und -17, breite Modelle)102
	5.2.4	ALLU Radladerbasisplatte (DS/DH-23 und -27, breite Modelle)103
	5.2.5	Zweiteilige ALLU-Radladerbasisplatte (DS/DH-23 und -27, breite Modelle) 104
	5.3	Technische Daten
	5.4	Hydrauliksystem

5.4.1	Anschluss des Transformers am Hydrauliksystem des Trägergeräts	108
5.4.2	Löffel mit Einzelantrieb	109
5.4.3	Löffel mit Doppelantrieb	111
1 Anhai	ng: Schlegel (TS-Serie)	114
1.1 I	D -12	114
1.1.1	TS08_TS16	114
1.1.2	TS08_TS24	116
1.1.3	TS16_TS32	118
1.1.4	TS16_TS48	120
1.1.5	TS25_TS50	122
1.1.6	TS25_TS75	124
1.1.7	TS35_TS70	126
1.1.8	TS35_TS105	128
1.2 I) -17	130
1.2.1	TS08_TS16	130
1.2.2	TS08_TS24	132
1.2.3	TS16_TS32	134
1.2.4	TS16_TS48	136
1.2.5	TS25_TS50	138
1.2.6	TS25_TS75	140
1.2.7	TS35_TS70	142
1.2.8	TS35_TS105	144
1.3 I	D -23	146
1.3.1	TS08_TS16	146
1.3.2	TS08_TS24	148

	1.3.3	TS16_TS32	.150
	1.3.4	TS16_TS48	.152
	1.3.5	TS25_TS50	.154
	1.3.6	TS25_TS75	.156
	1.3.7	TS35_TS70	.158
	1.3.8	TS35_TS105	.160
2	Anhan	g: ALLU-Sensor – technische Daten	.162

1 ALLGEMEINE INFORMATIONEN

Wichtige Informationen sind in dieser Betriebsanleitung, den am Produkt angebrachten Schildern, den Transportrichtlinien und in weiteren länder-, projekt- oder baustellenspezifischen Richtlinien enthalten. Die Anweisungen sind integraler Bestandteil des Produkts und müssen dem Personal jederzeit zur Verfügung stehen. Die vorliegende Betriebsanleitung ist an einem leicht zugänglichen Ort in der Kabine des Trägergeräts aufzubewahren. Es ist dafür zu sorgen, dass die Betriebsanleitung nicht verunreinigt oder beschädigt wird. Bei Fragen zum Inhalt der Anleitung ist Hilfe anzufordern.

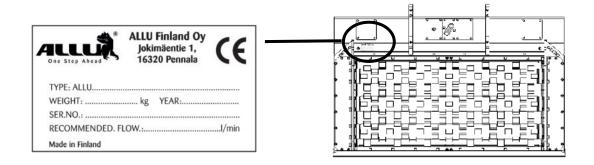
MARNUNG

ANWEISUNGEN BEACHTEN

Vor Wartungsarbeiten oder Betrieb die vorliegende Betriebsanleitung lesen und alle enthaltenen Anweisungen beachten. Eine unsachgemäße Verwendung der Maschine kann zu schweren Verletzungen und im Extremfall zum Tod führen.

1.1 Zweck der Betriebsanleitung

Diese Betriebsanleitung soll den sicheren, zweck- und sachgemäßen sowie kosteneffizienten Einsatz der Maschine gewährleisten. Sie ermöglicht die Erkennung und Vermeidung von Risiken und deren Folgen.


Beim Betrieb der Maschine müssen die Anweisungen der Betriebsanleitung befolgt werden. Außerdem sind sämtliche vor Ort geltenden Richtlinien und gesetzlichen Vorschriften sowie lokale Bestimmungen (z. B. Arbeitsschutzrichtlinien) zu befolgen.

Die Betriebsanleitung sorgfältig durchlesen und alle Anweisungen genau befolgen. Bei etwaigen Unklarheiten den Arbeitgeber oder den zuständigen Repräsentanten von ALLU um Klärung bitten. Sämtliche Teile der Betriebsanleitung enthalten wichtige Sicherheitsinformationen.

Diese werden auch bei der Benutzerschulung verwendet. Eine Befolgung der Anweisungen trägt zur Minimierung von Wartungskosten und Betriebsausfällen und zur Maximierung der Maschinenzuverlässigkeit und -standzeit bei.

1.2 Kennzeichnung

Modellangabe und Seriennummer des Transformers sind auf dem Typenschild angegeben. Sicherstellen, dass das dort angegebene Modell in der Liste der Modelle der vorliegenden Betriebsanleitung enthalten ist. Die Seriennummer ist zur Identifizierung der Maschine, beispielsweise bei der Bestellung von Ersatzteilen, erforderlich.

1.3 Hersteller

Dieser Transformer wurde hergestellt von:

ALLU Finnland Oy,

Jokimäentie 1

16320 Pennala

FINNLAND

Telefon: +358 3 882 140

Fax: +358 3 882 1440

Internet: www.allu.net

E-Mail: info@allu.net

1.4 CE-Kennzeichnung und EG-Konformitätserklärung

Die CE-Kennzeichnung befindet sich auf dem Typenschild. Ab Werk entspricht der Transformer sämtlichen Gesundheits- und Sicherheitsanforderungen der Maschinenrichtlinie. Die EG-Konformitätserklärung ist an einem geeigneten Ort aufzubewahren und muss bei Verkauf oder Weitergabe der Maschine dem neuen Eigentümer ausgehändigt werden.

1.5 Inhalt der EG Konformitätserklärung

EG-Konformitätserklärung

(Richtlinie 2006/42/EG, Anhang II A, Richtlinie 2000/14/EG)

Der Hersteller: ALLU Finnland Oy,

Adresse: Jokimäentie 1, 16320 Pennala, FINNLAND

erklärt hiermit, dass der Transformer, Modell AAA, Seriennummer ZZZ

den Anforderungen der Maschinenrichtlinie (Richtlinie 2006/42/EG)

und den Anforderungen der Geräte- und Maschinenlärmschutzverordnung (Richtlinie

2000/14/EG) entspricht.

Diese Konformitätserklärung gilt nur, wenn an der Maschine keinerlei vom Hersteller nicht

schriftlich genehmigten Modifikationen vorgenommen wurden.

N.N. (berechtigt zur Zusammenstellung der technischen Daten der Maschine)

N.N. (berechtigt zur Formulierung der Konformitätserklärung)

Datum: tt.mm.jj

Ort: Jokimäentie 1, 16320 Pennala, FINNLAND

1.6 Zweck der Anleitung

Die vorliegende Anleitung enthält Sicherheitsvorschriften sowie Anweisungen zu Betrieb,

Transport, Schmierung und Wartung der Maschine. Sie gelten für Maschinen so, wie diese

ab Werk geliefert werden.

Handbuch, EG-Konformitätserklärung und vor allem auch die Sicherheitsvorschriften haben

nur Gültigkeit, wenn an der Maschine keinerlei vom Hersteller nicht genehmigten

Modifikationen vorgenommen wurden.

Einige Abbildungen zeigen ggf. ein anderes Maschinenmodell. Zur Verdeutlichung wurden

außerdem bei einigen Abbildungen möglicherweise bestimmte Maschinenabdeckungen

weggelassen.

9

Das Produkt wird kontinuierlich weiterentwickelt. Einige Änderungen werden daher in der vorliegenden Anleitung möglicherweise nicht berücksichtigt.

Fragen zum Produkt oder zur Betriebsanleitung können an den zuständigen Repräsentanten von ALLU gerichtet werden.

1.6.1 In dieser Anleitung erfasste Transformer-Modelle

DN 2-09	DS 3-12	DH 3-12
DN 2-12	DS 3-17	DH 3-17
DN 2-17	DS 3-23	DH 3-23
DN 3-09	DS 4-12	DH 4-12
DN 3-12	DS 4-17	DH 4-17
DN 3-17	DS 4-23	DH 4-23
		DH 4-27

Die vorliegende Betriebsanleitung gilt für nach April 2019 hergestellte Transformer.

1.7 Urheberrecht

Das Urheberrecht für diese Betriebsanleitung liegt bei ALLU Finnland Oy, Jokimäentie 1, 16320 Pennala, FINNLAND.

Das Handbuch oder Teile davon dürfen ohne schriftliche Genehmigung des Herstellers nicht vervielfältigt und/oder an Dritte weitergegeben werden.

Alle Rechte vorbehalten.

2 SICHERHEIT UND UMWELT

2.1 Format der Sicherheitshinweise

In der vorliegenden Betriebsanleitung werden folgende Sicherheitssymbole verwendet:

▲ GEFAHR

Der Sicherheitshinweis "Gefahr" weist auf unmittelbare Verletzungs-/Lebensgefahr hin.

MARNUNG

Der Sicherheitshinweis "Warnung" weist auf potenzielle Verletzungs-/Lebensgefahr hin.

A VORSICHT

Der Sicherheitshinweis "Vorsicht" weist auf Risiken leichter bis mittelschwerer Verletzungen und materieller Schäden hin.

HINWEIS

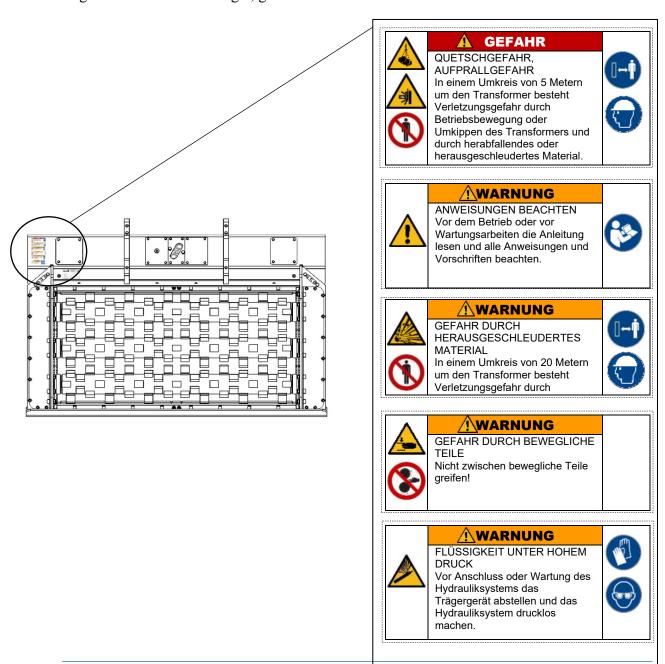
Hinweise enthalten Anweisungen oder sachdienliche Informationen.

2.1.1 Bedeutung der Symbole

Gefahrensymbole:

Allgemein e Gefahr	Gefahr durch herausges chleuderte s Material	Gefahr durch schweben de Last	Quetschge fahr	Entzündu ngsgefahr	Gefahr durch unter Druck stehendes Öl	Gefahr der Verletzun g von Händen und anderen Körperteil en

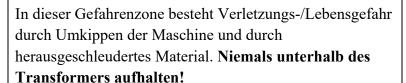
Verbotszeichen


Gebotszeichen

2.1.2 Sicherheitshinweise auf dem Transformer

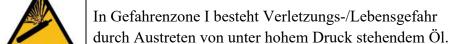
Die nachfolgend aufgeführten Sicherheitshinweise müssen auf dem ALLU-Transformer angebracht sein. Beschädigte, gelöste oder fehlende Schilder müssen ersetzt werden.

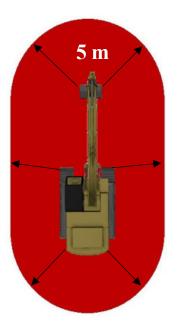
2.2 Gefahrenzonen und Gefahren bei der Arbeit


2.2.1 Gefahrenzone I (5 m)

GEFAHR

Bei Anwesenheit einer anderen Person in der Gefahrenzone I die Arbeit sofort einstellen.





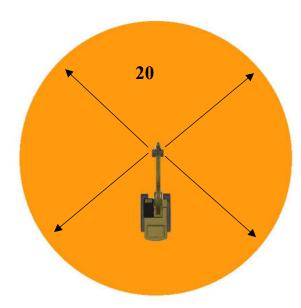
MARNUNG

Gefahrenzone I umfasst einen Bereich im Umkreis von 5 Metern um Trägergerät und Transformer. Während des Betriebs darf sich niemand in Gefahrenzone I aufhalten. In Gefahrenzone I besteht Verletzungsgefahr durch Fahren oder Umkippen der Maschine, durch herunterfallendes Material und durch Austreten von unter hohem Druck stehendem Öl. Der Fahrer muss die Umgebung kontinuierlich beobachten und den Betrieb umgehend einstellen, wenn sich eine Person dem Transformer oder dem Trägergerät näher als 5 Meter nähert.

Trägergeräte mit offener Kabine müssen mit einer Vorrichtung zum Schutz des Fahrers vor herabfallendem und herausgeschleudertem Material ausgestattet werden.

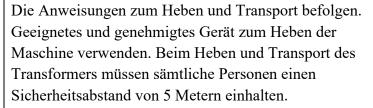
2.2.2 Gefahrenzone II (20 m)

MARNUNG


Wird eine Person in Gefahrenzone II bemerkt, muss der Betrieb sofort eingestellt werden.

In Gefahrenzone II besteht Verletzungs-/Lebensgefahr durch herabfallendes/herausgeschleudertes Material.

Gefahrenzone II umfasst einen Bereich im Umkreis von 20 Metern um den Transformer. Während des Betriebs darf sich niemand in Gefahrenzone I aufhalten. Im Umkreis von 20 Metern um den Transformer besteht Verletzungsgefahr durch herabfallendes/herausgeschleudertes Material, Lärm und Staub. Der Fahrer muss die Umgebung kontinuierlich beobachten und den Betrieb umgehend einstellen, wenn sich eine Person dem Transformer näher als 20 Meter nähert.


Sofern es in einem Ausnahmefall unumgänglich ist, dass eine Person eine Gefahrenzone während des Betriebs betritt, muss der Fahrer informiert werden und entsprechende Vorsicht walten lassen.

2.3 Gefahren bei Transport und Wartung

2.3.1 Umkippen/Herabfallen des Transformers

A GEFAHR

Es besteht Verletzungs- und Lebensgefahr durch Umkippen/Herabfallen des Transformers!

2.3.2 Flüssigkeit unter hohem Druck

Vor Durchführen betrieblicher Wartungsarbeiten (s. Abschnitt 4) und vor Anschließen bzw. Abklemmen des Hydrauliksystems (s. Abschnitt 3) das Trägergerät abstellen und das Hydrauliksystem drucklos machen. Hierzu den Steuerhebel der Zusatzhydraulik betätigen, während nur der Anlassermotor läuft.

Es besteht Verletzungs- und Lebensgefahr durch Austreten von unter hohem Druck stehendem Öl.

Gelangt Hydrauliköl in die Augen oder dringt mit hohem Druck austretendes Hydrauliköl in die Haut ein, sofort einen Arzt aufsuchen.

2.3.3 Unbeabsichtigtes Anlaufen

MARNUNG

Vor Austausch von Verschleißteilen und Durchführen größerer Wartungsarbeiten (s. Abschnitt 4) den Transformer vom Trägergerät abkuppeln und das Hydrauliksystem abklemmen, um ein unbeabsichtigtes Anlaufen zu verhindern. Solange der Transformer mit dem Trägergerät verbunden ist, niemals zwischen rotierende Teile greifen.

Bei einem Sturz unter den laufenden Transformer oder Erfasstwerden durch rotierende Teile besteht Verletzungsund Lebensgefahr!

2.3.4 Umweltschäden

A VORSICHT

Bei Entdecken eines Öl- oder Schmierfettlecks den Betrieb sofort einstellen. Trägergerät abstellen und Hydrauliksystem drucklos machen. Hierzu den Steuerhebel der Zusatzhydraulik betätigen, während nur der Anlassermotor läuft.

Zur Eingrenzung des Umweltschadens das ausgetretene Öl/Schmierfett mit Sand oder einem ähnlichen Feststoff aufsaugen. Das kontaminierte Material fachgerecht entsorgen.

2.4 Aufgaben des Personals und allgemeine

Sicherheitsanweisungen

MARNUNG

Der Transformer darf nur von Personen installiert, betrieben und gewartet werden, die die Anleitung gelesen und verstanden haben und die für eine sachgerechte und sichere Arbeit erforderlichen Kenntnisse und Fertigkeiten besitzen. Sämtliche allgemeinen und speziellen Sicherheitsvorschriften sind in jedem Fall zu befolgen.

Bei fehlerhafter Installation, unsachgemäßer Verwendung oder fehlerhaft durchgeführter Wartung besteht Verletzungs- und Lebensgefahr!

↑ WARNUNG

Sämtliche in Arbeitsbestimmungen oder baustellenspezifischen Vorschriften vorgeschriebene persönliche Schutzausrüstung muss verwendet werden.

Verletzungs-/Lebensgefahr durch Lärm, Staub und wegfliegendes Material.

Vor Inbetriebnahme der Maschine sind sämtliche geltenden (auch baustellenspezifische) Vorschriften in Bezug auf die Verwendung persönlicher Schutzausrüstung, Maschinensicherheit und Arbeitssicherheit zur Kenntnis zu nehmen und beim Betrieb der Maschine zu befolgen. Die Betriebsanleitung muss griffbereit in der Kabine des Trägergeräts aufbewahrt werden.

Es gelten folgende allgemeine Richtlinien:

- Den Transformer nie unter dem Einfluss von Alkohol oder illegaler Substanzen verwenden.
- Den Transformer nie zum Heben oder Transportieren von Personen verwenden.

- Bei laufendem Motor des Trägergeräts nie eine Inspektion oder Reparatur des Transformers durchführen.
- Der Transformer darf ausschließlich von der Kabine des Trägergeräts aus bedient werden.
- Der Fahrer muss mit dem Betrieb des Trägergeräts, einschl. Drucklosmachung des Hydrauliksystems, vertraut sein.
- Der Fahrer muss die gemäß Betriebsumgebung, Betriebsbedingungen und geltenden Bestimmungen vorgeschriebene persönliche Schutzausrüstung verwenden.
- Der Fahrer muss den Betrieb einstellen, wenn eine Person die Gefahrenzone betritt.
- Zur Vermeidung eines versehentlichen Betretens der Gefahrenzone muss der Fahrer sämtliche betroffenen Personen über einen geplanten Transport des Transformers an einen anderen Ort informieren.

2.5 Zweckgemäßer Einsatz und Betriebsbedingungen

2.5.1 Zweckgemäßer Einsatz

Der Transformer ist ein hydraulisches Anbauelement für hydraulisch betriebene Bagger, Radlader oder ähnliche Trägergeräte, das zum Sieben, Brechen, Pulverisieren, Mischen und Deponieren verschiedener Materialien verwendet wird.

Er ist nicht zum Graben, Brechen harten Gesteins oder Transportieren großer und schwerer Objekte geeignet.

2.5.2 Betriebsbedingungen

A GEFAHR

Den Transformer nicht in Umgebungen mit Explosions- oder Entzündungsrisiko verwenden!

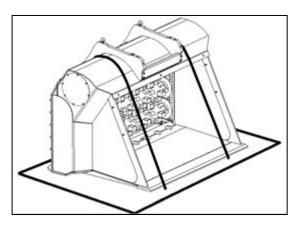
Bei Entstehung eines Funkens besteht Brand-/Explosionsrisiko und somit Verletzungs- und Lebensgefahr!

- Der Transformer darf nur im Freien oder in Innenräumen verwendet werden, die für den Betrieb einer solchen Maschine geeignet sind.
- Der Transformer ist für eine Betriebstemperatur von -25 °C bis 60 °C ausgelegt.
- Der Einsatz des Transformers unter Wasser ohne baustellenspezifische
 Risikoanalyse und Sicherheitsmaßnahmen ist aufgrund des Ölleckrisikos verboten.
- Bei der Arbeit mit Gefahrengütern und toxischen Stoffen müssen entsprechende Sicherheitsmaßnahmen getroffen und persönliche Schutzausrüstung verwendet werden.

2.5.3 Nicht bestimmungsgemäßer oder unsachgemäßer Gebrauch

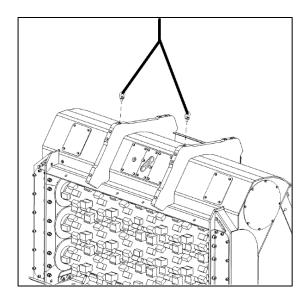
Der Transformer ist zur Bearbeitung verschiedener Materialien gemäß der vorliegenden Anleitung vorgesehen. Jeglicher nicht den Richtlinien in vorliegender Anleitung entsprechender Einsatz stellt einen nicht bestimmungsgemäßen bzw. unsachgemäßen Gebrauch dar.

Bei nicht bestimmungsgemäßem oder unsachgemäßem Gebrauch besteht die Gefahr der Beschädigung des Transformers oder des Trägergeräts sowie Verletzungsgefahr für Personen!


2.5.4 Reparaturen und Modifikationen

Für ALLU-Transformer dürfen bei Wartung oder Nachrüstung nur Original-Ersatzteile von ALLU verwendet werden. Jegliche Modifikationen an dem Transformer ohne schriftliche Genehmigung des Herstellers sind verboten.

3 INBETRIEBNAHME UND VERWENDUNG


3.1 Transport, Heben und Lagerung

3.1.1 Transport

Beim Transport muss der Transformer mit der Unterseite nach unten auf das Fördermittel geladen und separat auf diesem gesichert werden.

3.1.2 Heben und Bewegen

Zum Heben und Bewegen die Seile bzw.
Ketten der Winde an den dafür
vorgesehenen Ringen weiter hinten am
Adapter befestigen. Wurde für den
Transformer ein Adapter installiert, die
Seile bzw. Ketten an Teilen befestigen, die
sich nicht lösen können.

Das Gewicht des Transformers (ohne Zubehör und Adapter) ist auf dem Typenschild und in den technischen Daten der vorliegenden Anleitung angegeben.

Bei Verwendung eines Gabelstaplers immer an der Wellenseite unter die Maschine greifen.

Die Maschine nie an der Plattenseite heben. Wird der Transformer an der Plattenseite gehoben, kann er umkippen, da der Schwerpunkt hoch und nach hinten gerichtet ist.

Den Transformer nie auf einem abschüssigen oder weichen Untergrund vom Trägergerät oder einer Winde lösen, da er sonst umkippen kann. Vorsicht beim Lösen der Bänder zur Transportsicherung der Maschine. Es besteht die Gefahr des Umkippens.

3.1.3 Langfristige Lagerung

Den Transformer vor Wettereinflüssen geschützt lagern.

Vorbereitung zur Einlagerung:

- Den Transformer waschen und schmieren.
- Sämtlichen Rost entfernen, und betroffene Stellen lackieren.
- Blanke Metalloberflächen mit Korrosionsschutz einsprühen.
- Sämtliche offenen Hydraulikleitungen verschließen.

3.2 Anbau am Trägergerät

3.2.1 Mechanischer Anbau und Adapter

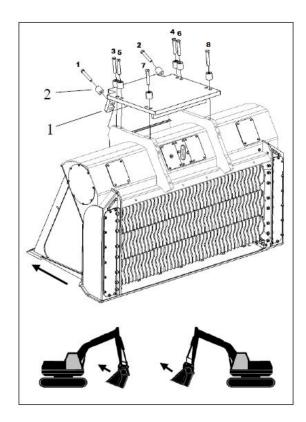
Der Transformer wird mit einem Adapter am Trägergerät angebaut.

Der Adapter verfügt über zum Trägergerät passende angeschweißte Befestigungselemente.

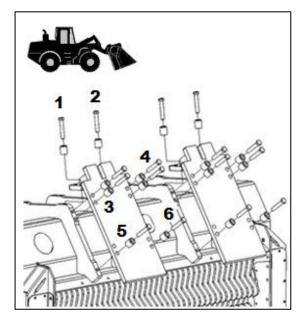
Befestigungsschrauben des Adapters:

Transformermodell	Schraubengröße	Anziehdrehmoment
DN, DS	M20 (10.9)	540 Nm (Gewinde geölt)
DH	M24 (10.9)	960 Nm (Gewinde geölt)

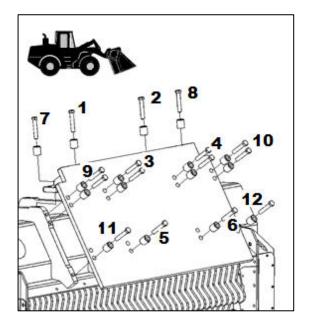
MARNUNG


Bei der Montage des Adapters sorgfältig alle Anweisungen befolgen, um die notwendige Festigkeit sicherzustellen. Alle Schrauben installieren, immer Distanzhülsen, geeignete Schrauben und das richtige Anziehdrehmoment verwenden.

Bei Lösen und Herabfallen des Transformers besteht Verletzungs- und Lebensgefahr!

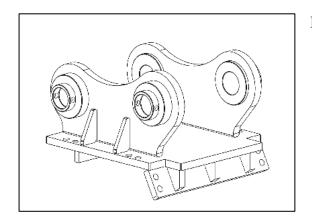

3.2.1.1 Installation des Baggeradapters

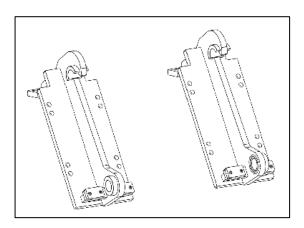
Der Transformer kann als Hoch- und als Tieflöffel angebaut werden. Abhängig vom Anbau des Transformers ist die Installation des Adapters zu wählen.


- Die Blende der Basisplatte [1] muss an der Vorderseite des Transformers sitzen.
- Alle Schrauben in der abgebildeten Reihenfolge zunächst mit dem halben Drehmoment und dann in einem zweiten Durchgang mit dem vollen Drehmoment festdrehen.
- Für jede Schraube eine
 Distanzhülse [2] verwenden.
- Wenn die Position des
 Transformers bei befestigtem
 Baggeradapter geändert wird, muss die Blende der Basisplatte [1] an der Vorderseite des Transformers verbleiben, wenn dieser als
 Tieflöffel angebaut ist.

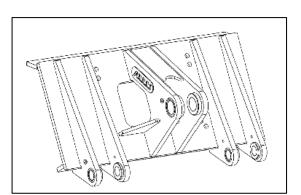
3.2.1.2 Installation des Radladeradapters

Zweiteilige Basisplatte: Alle Schrauben in der abgebildeten Reihenfolge zunächst mit dem halben


Drehmoment und dann in einem zweiten Durchgang mit dem vollen Drehmoment festdrehen.


Einteilige Basisplatte: Alle Schrauben in der abgebildeten Reihenfolge zunächst mit dem halben

Drehmoment und dann in einem zweiten Durchgang mit dem vollen Drehmoment festdrehen.


3.2.2 Adapterabbildungen

Baggeradapter, Bolzenmontage



Radladeradapter, Schnellverbinder (ähnl. Volvo)

Radladeradapter, Z-Verbinder

3.2.3 Anbau am Trägergerät

Den Transformer immer auf ebenem, festem Untergrund montieren und demontieren. Den Transformer stets so abstellen, dass die Grundplatte am Boden aufliegt.

Den Transformer nie kopfüber abstellen.

3.2.4 Anschluss und Anforderungen des Hydrauliksystems

3.2.4.1 Hydrauliköl

Für den Transformer muss vom Hersteller genehmigtes, hochwertiges Hydrauliköl auf Mineralölbasis mit Additiven verwendet werden. Die Viskosität des Öls muss bei normaler Betriebstemperatur dem empfohlenen Richtwert möglichst entsprechen. Bei abweichender Viskosität verkürzt sich die Standzeit des Antriebs.

ISO VG-Klassifizierung der Viskosität von Hydrauliköl nach Betriebstemperatur:

Max. Betriebstemperatur	ISO VG-Klasse
40–50 °C	46
50–60 °C	68
60–80 °C	100

Richtwerte für Hydrauliköl:

Empfohlene Betriebstemperatur	30–60 °C
Empfohlene Viskosität bei	35 cSt
Zulässige Viskosität	20–75 cSt

Eine dauerhaft hohe Temperatur des Hydrauliköls verkürzt die Standzeit. Das Hydrauliköl in den im Wartungsprogramm des Trägergeräts angegebenen Intervallen wechseln.

3.2.4.2 Hydraulikölfilter und -kühlung

Der höchste zulässige Verschmutzungsgrad für das Hydrauliköl nach ISO 4406 beträgt 20/16. Der Filter muss auf eine Partikelgröße von maximal 25 μm ausgelegt sein.

Bei hoher Beanspruchung kann am Transformer starke Wärme entstehen, die hauptsächlich an das Hydrauliksystem des Trägergeräts abgegeben wird. Daher wird die Verwendung eines Hydrauliksystems mit Kühlung für das Trägergerät empfohlen.

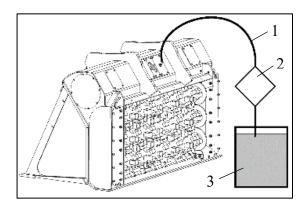
3.2.4.3 Hydraulikeinstellungen des Trägergeräts

Der Transformer erfordert eine Zwei-Wege-Hydraulik, damit die Wellen in beide Richtungen angetrieben werden können. Den Hydraulikvolumenstrom auf den auf dem Typenschild bzw. in den technischen Daten der Maschine angegebenen Wert einstellen.

Es ist nicht erforderlich den maximalen Druck der Hydraulik zu begrenzen. Alle Transformer der D-Serie besitzen ein Regelventil zum Schutz vor hydraulischer Überlast. Das Überlastventil regelt die Druckdifferenz des Motors ab 280 bar und den Hydraulikvolumenstrom, wenn dieser den modellspezifischen Höchstwert übersteigt.

Bei Baggern wird als Maximaldruck für den Zusatzhydraulikkreislauf ein Bereich von 300 bar empfohlen. Bei Radladern wird als Maximaldruck für den Hydraulikkreislauf die höchstmögliche Einstellung empfohlen.

Ventile und Leitungen des Trägergeräts erzeugen in der Rückführungsleitung einen Gegendruck von 10 bis 30 bar (je nach Trägergerät). Ein hoher Gegendruck verursacht u. a. einen Kraftverlust und eine Erwärmung des Hydrauliköls.


HINWEIS

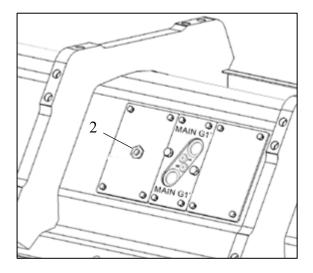
Den Hydraulikvolumenstrom des Trägergeräts auf den geringstmöglichen Wert einstellen, mit dem die Leistung noch erreicht wird. Eine unnötig hohe Rotationsgeschwindigkeit führt zur Erwärmung des Hydrauliköls und höherem Verschleiß an Motor und Verschleißteilen.

3.2.4.4 Leckölleitung

Neben der Zwei-Wege-Hydraulik ist im Trägergerät eine Niederdruck-Leckölleitung erforderlich,

über die das im Hydraulikantrieb angesammelte Öl in den Hydrauliktank zurückgeführt wird.

Im Transformer gesammeltes Öl wird über die Leckölleitung [1] in den Hydrauliktank des Trägergeräts [3] zurückgeführt. Das Öl kann entweder durch einen separaten Filter [2] oder den Rücklauffilter des Trägergeräts geführt werden (s. Abbildung in Abschnitt 5.3.3).


HINWEIS

Zurückgeführtes Öl darf nicht durch Ventile, Hähne o. Ä., geführt werden. Es muss immer durch den Filter direkt in den Hydrauliktank geführt werden,

um eine Erhöhung des Gegendrucks bzw. einen unbeabsichtigten Verschluss der Leckölleitung zu vermeiden. Der Gegendruck in der Leckölleitung darf 30 bar nicht überschreiten. Ein zu hoher Druck in der Leckölleitung führt zur Beschädigung des Hydraulikantriebs.

Für den Transformer wird als Extra ein Sicherheitsventil zum Schutz des Hydraulikantriebs vor einem überhöhten Gegendruck in der Leckölleitung angeboten.

Falls keine Leckölleitung genutzt werden kann, ist der Einbau eines zusätzlich erhältlichen Leckölkompensators möglich. Wenn möglich, ist jedoch eine Leckölleitung zu verwenden.

Wurde der zusätzliche
Leckölkompensator eingebaut, muss das
Druckventil für das Antriebsgehäuse an
Anschluss [2] angeschlossen werden.
Übersteigt der Gegendruck der
Leckölleitung 60 bar, öffnet sich das
Druckventil, sodass Öl über das Sieb an
Anschluss [2] fließen kann.

3.2.4.5 Schläuche und Anschlüsse

Anschlüsse:

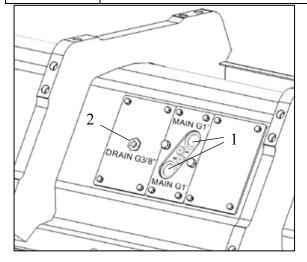
Transformermodell	Betriebsanschlüsse	Leckölanschluss	Druckanschluss
Alle Modelle	Gewinde G1"	Gewinde G3/8"	Gewinde G1/4"

Empfohlene Mindestschlauchdurchmesser:

Transformermodell	Betriebsschläuche	Leckölleitung
Alle Modelle	1" (min. Nenndruck 350 bar)	3/8"

MARNUNG

Vor Anschließen oder Abklemmen des Hydrauliksystems das Trägergerät abstellen und das Hydrauliksystem drucklos machen. Hierzu den Steuerhebel der Zusatzhydraulik betätigen, während nur der Anlassermotor läuft.


An unter Druck stehenden Anschlüssen kann unter hohem Druck Öl austreten. Es besteht Verletzungs- und Lebensgefahr.

A

VORSICHT

Beim Anschließen zur Vermeidung einer Kontamination der Umwelt mit Hydrauliköl Wannen und saugfähiges Material bereithalten.

- Die Betriebsschläuche und die Leckölleitung mit geeigneten Armaturen anschließen. Anschlüsse für Betriebsschläuche [1] und Anschlüsse für Leckölleitung [2].
 Beim Anschließen von Leitungen nie auf den Transformer steigen.
- 2. Die Schläuche so verlegen, dass sie keine scharfen Kanten berühren. Wo erforderlich, 45°- oder 90°-Verbinder verwenden.
- Nach Anschließen der Hydraulikschläuche sämtliche Transformerstellungen testen, um sicherzustellen, dass die Schläuche an keiner Stelle überdehnt oder geknickt werden.

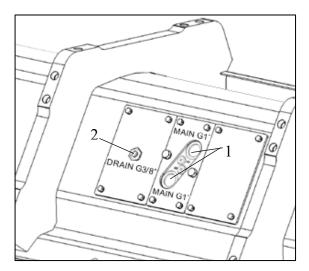
HINWEIS

Bei Verwendung von Schnellkupplungen insbesondere beim Anschluss der Leckölleitung sorgfältig darauf achten, dass kein Überdruck entsteht oder die Leckölleitung birst.

3.2.4.6 Abklemmen des Hydrauliksystems

MARNUNG

Vor Anschließen oder Abklemmen des Hydrauliksystems das Trägergerät abstellen und das Hydrauliksystem drucklos machen. Hierzu den Steuerhebel der Zusatzhydraulik betätigen, während nur der Anlassermotor läuft.



An unter Druck stehenden Anschlüssen kann unter hohem Druck Öl austreten. Es besteht Verletzungs- und Lebensgefahr.

∴ VORSICHT

Beim Anschließen zur Vermeidung einer Kontamination der Umwelt mit Hydrauliköl Wannen und saugfähiges Material bereithalten.

Schläuche abklemmen und alle offenen Anschlüsse am Transformer [1] [2] verschließen. Verbleiben Schläuche am Transformer, die Schlauchenden verschließen. Beim Abklemmen von Leitungen nie auf den Transformer steigen.

HINWEIS

Anschlüsse sauber und verschlossen halten und dafür sorgen, dass keine offenen Anschlüsse in Kontakt mit dem Boden kommen, um eine Verschmutzung des Hydrauliköls zu vermeiden. Schmutz im Hydrauliköl verursacht Schäden an sämtlichen Komponenten des Hydrauliksystems und verkürzt deren Standzeit.

3.3 Vorbereitung

3.3.1 Übernahmeprüfung

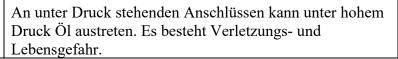
Bei Anlieferung eines neuen Transformers prüfen, ob folgende Dokumente im Lieferumfang enthalten sind:

- Betriebsanleitung
- Ersatzteilliste
- Gewährleistungsbedingungen und Registrierungsformular für die Gewährleistung Registrierungsformular für die Gewährleistung ausfüllen und an den Repräsentanten von ALLU schicken.

3.4 Bedienung

3.4.1 Grundlagen

Der Transformer ist ein hydraulisches Anbauelement für hydraulisch betriebene Bagger, Radlader oder ähnliche Trägergeräte, das zum Sieben, Brechen, Pulverisieren, Mischen und Deponieren verschiedener Materialien verwendet wird. Er kann vielfältiges Material verarbeiten, darunter Mutterboden, Erdaushub, Sand, Kies, Asphalt, Schotter, Lehm, Torf, Kohle, Rinde, Kompost, organische Abfälle, Bauabfälle, Fräsasphalt und Glas.


Die Verarbeitung erfolgt mittels Wellen, die von einem oder mehreren Hydraulikmotoren angetrieben werden und sich in derselben Richtung drehen. Drehrichtung und - geschwindigkeit der Wellen werden über die entsprechenden Bedienelemente vom Trägergerät aus gesteuert. Bei der Bearbeitung wird durch die Wellenrotation feinkörniges Material erzeugt, das direkt nach unten aus der Schaufel fällt. Große und unzerkleinerte Stücke verbleiben im Löffel und können an anderer Stelle abgekippt werden. Verarbeitungsgrößen wie Brechstärke und Korngröße werden über die Auswahl der Wellen und Schlegel gesteuert.

3.4.2 Inbetriebnahme

MARNUNG

Vor der Inspektion von Anschlüssen das Trägergerät abstellen und das Hydrauliksystem drucklos machen. Hierzu den Steuerhebel der Zusatzhydraulik betätigen, während nur der Anlassermotor läuft.

Vor Inbetriebnahme der Maschine folgende Schritte ausführen:

- Den Transformer in verschiedene Richtungen neigen, um sicherzustellen, dass er nicht mit dem Ausleger des Trägergeräts kollidiert und die Hydraulikschläuche nicht überdehnt oder geknickt werden.
- Den Transformer so neigen, dass die Wellen von der Kabine des Trägergeräts aus zu sehen sind. Die Wellen ca. 2 Minuten lang langsam in beide Richtungen drehen lassen, um das Hydrauliksystem zu entlüften. Maschine auf Lecks prüfen.
- Hydraulikschläuche und -anschlüsse auf Lecks und Beschädigungen prüfen.
- Durch Sichtprüfung sicherstellen, dass die Adapterbefestigungsschrauben nicht gelöst sind.

3.4.3 ALLU-App und ALLU-Sensor

Der ALLU-Transformer ist mit einem ALLU-Sensor ausgestattet, der Betriebsdaten des Transformers erfasst. Die Daten können über die ALLU-App eingesehen werden, die von einem App-Store heruntergeladen werden kann. Die App bietet Anweisungen und Tipps rund um das Gerät sowie Informationen wie Betriebsstunden usw. Sie kann außerdem zur Schätzung des Zeitpunkts, zu dem Routinewartungsarbeiten erforderlich werden, genutzt werden.

3.4.3.1 Verwendung der App

- Die ALLU-App aus dem App-Store auf das Mobilgerät herunterladen.
- Eine Registrierung als ALLU-App-Benutzer durchführen.
- Den verwendeten ALLU-Transformer in die Liste MY ALLU der App einfügen.
 Hierzu entweder
 - o a) die Seriennummer des Transformers in die App eingeben oder
 - b) eine Bluetooth-Verbindung verwenden (Hinweis: Darauf achten, dass Bluetooth auf dem Mobilgerät aktiviert ist.)
 - o HINWEIS! Der erste registrierte Benutzer gilt als Hauptbenutzer.
 - O Der Hauptbenutzer kann alle Gerätedaten einsehen und neue Daten erfassen.
 - o Er kann außerdem andere Personen zur Registrierung als Benutzer einladen.

Durch Herunterladen der ALLU-App und Registrierung der Maschine erklärt der Benutzer sein Einverständnis mit den Allgemeinen Bestimmungen und ist verpflichtet, diese zu befolgen.

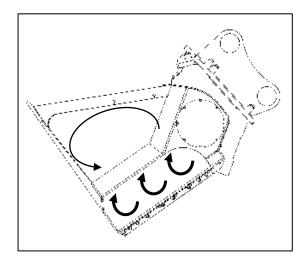
3.4.3.2 Wartung

Bei einem Defekt des ALLU-Sensors, oder wenn die Batterieleistung nachlässt, den zuständigen Repräsentanten von ALLU verständigen. Der ALLU-Sensor kann durch ein Ersatzteil ersetzt werden und der Betrieb wird auf der Grundlage der zuletzt aufgezeichneten Daten fortgesetzt.

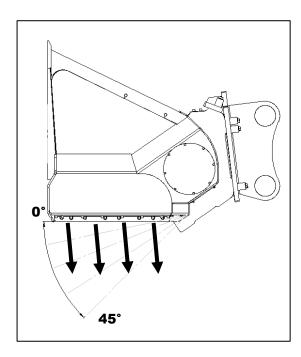
3.4.3.3 Anweisungen

ALLU-App und ALLU-Sensor sind über Bluetooth verbunden. Die Bluetooth-Verbindung muss in der App und im Sensor aktiviert werden, wenn die Betriebsstunden des Gerätes berechnet oder die optimale Betriebsposition getestet wird. Die Verbindung wird automatisch beendet, wenn die Funktion nicht genutzt wird.

Die ALLU-App bietet Informationen zum Einsatz des ALLU-Transformers, einschließlich Sicherheitshinweisen, Betriebszeiten, Wartungsdaten und Ersatzteillisten. Sie enthält außerdem die neuesten Betriebs- und Wartungsanleitungen sowie Informationen zu den Maschinenanwendungen.


3.4.3.4 Entsorgung

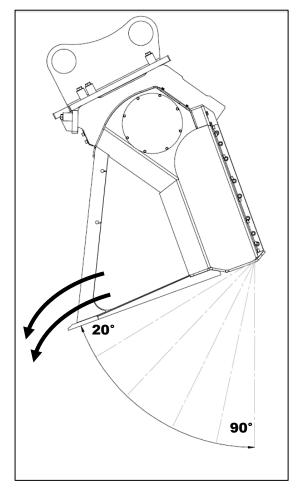
Der ALLU-Sensor ist mit einer Lithium-Thionylchlorid-Batterie ausgestattet, die gemäß den vor Ort geltenden Richtlinien entsorgt werden muss.



ALLU-Sensor

3.4.4 Sachgemäßer Einsatz

Durch die Drehrichtung der Wellen von unten nach oben wird Material im Transformer so gemischt, dass feinere Teile getrennt werden. Wird Material nicht ordnungsgemäß durch den Transformer befördert oder kommt es zu einer Blockierung, den Löffel neigen oder die Drehrichtung der Wellen für kurze Zeit umkehren.



Der Löffel ist für einen Betriebswinkel zwischen 0° und 45° von der Horizontalen relativ zur Rückseite vorgesehen. Bei einem Betriebswinkel über 45° steigt das Risiko von Schäden und Verletzungen durch herausgeschleuderte Steine.

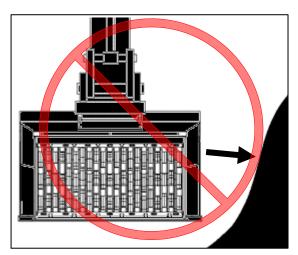
Sicherstellen, dass der Positionsbereich des Auslegers eine Neigung des Transformers im in der Abbildung angegebenen Winkelbereich gestattet (0°-Position ist in Einzelfällen nicht möglich).

Der optimale Betriebswinkel hängt von dem zu bearbeitenden Material ab. Im Einsatz sind verschiedene Winkel auszuprobieren.

Die ALLU-App hilft bei der Ermittlung des optimalen Betriebswinkels.

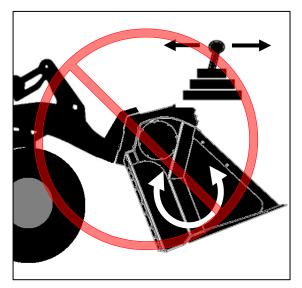
Die Entleerung des Löffels ist in einem Winkel zwischen 20° und 90° von der Horizontalen relativ zur Grundplatte vorgesehen.

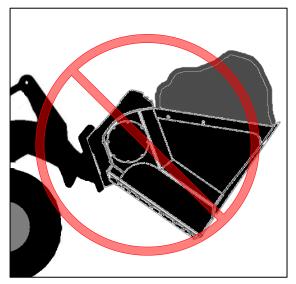
Sicherstellen, dass der Positionsbereich des Auslegers eine Neigung des Transformers in dem in der Abbildung angegebenen Entleerungswinkelbereich gestattet.


Weitere Hinweise:

- Verschleißteile rechtzeitig auswechseln. Verschleiß an Schlegeln mindert die Leistung und wirkt sich auf die Korngröße aus.
- Den Transformer bei der Arbeit mit bindigem Material regelmäßig reinigen. An den Innenflächen des Transformers, Wellen und Kontramessern anhaftendes Material mindert die Leistung und erhöht die Last.
- Vor dem vollständigen Entleeren der Schaufel sind die Wellen anzuhalten. Dadurch wird ein Verschleudern von Steinen verhindert und die Gesamtleistung erhöht (die Förderung von Material durch einen fast leeren Transformer ist in der Regel langsamer).

3.4.5 Unzulässige Arbeitsmethoden


Material nicht mit den Wellen des Transformers schieben. Es besteht die Gefahr der Beschädigung der Lagerdichtungen.


Material nicht mit den Seitenflächen des Transformers schieben. Es besteht die Gefahr der Beschädigung des Transformers.

Den Transformer beim Fahren/Transport des Trägergeräts nicht als Stütze einsetzen. Es besteht die Gefahr der Beschädigung des Transformers.

Die Drehrichtung des Transformers nicht ständig wechseln, da hierdurch der Antriebsstrang schneller verschleißt. Vor dem Wechseln der Drehrichtung abwarten, bis die Wellen zum Stillstand gekommen sind.

Den Transformer nicht überladen. Dies kann den stabilen Stand des Trägergeräts beeinträchtigen und zu einer Blockierung des Transformers führen.

Sicherstellen, dass keine großen Steine in den Löffel geraten, um einen übermäßigen Verschleiß zu vermeiden.

4 WARTUNG

Das Wartungsprogramm für den Transformer umfasst tägliche und wöchentliche Inspektionen sowie eine jährliche Wartung. Bei der Inspektion müssen Bauteile, Verschleißteile und Antriebsstrang auf ihren Zustand geprüft und im Transformer festhängende Steine und andere Objekte entfernt werden. Bei der Wartung wird das Schmierfett für den Antriebsstrang gewechselt bzw. aufgefüllt, und die Komponenten werden geprüft und bei Bedarf ausgetauscht.

Das Wartungsprogramm enthält keinen Zeitplan für den Austausch von Verschleißteilen, da der Verschleiß von den Betriebsbedingungen und dem behandelten Material abhängt. Die Komponenten mit dem höchsten Verschleiß sind die Schlegel und Kontramesser. Diese Komponenten müssen bei jeder Inspektion auf Verschleiß geprüft werden. Sie müssen ausgetauscht werden, bevor ihr Verschleiß ein Maß erreicht, das einen Verschleiß der Befestigungen und anderer struktureller Komponenten des Transformers verursacht.

Wartungsmaßnahme	Abschnitt in der Betriebsanleitung	Zeitplan	
Tägliche Inspektion/Reinigung	4.1.1	Täglich/alle 8 Std.	
Wöchentliche Inspektion der Lagerschmierung	4.1.2	Wöchentlich/alle 40	
Umfassende Wartung	4.2	Jährlich/alle 500 Std.	
Austausch von Verschleißteilen	4.3	Bei Bedarf	

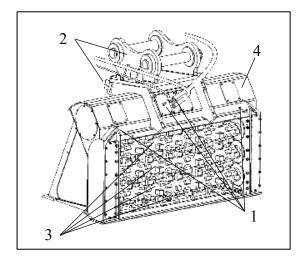
Informationen über die durchgeführten Inspektionen und Wartungsarbeiten können zur Überwachung des Wartungsbedarfs in der ALLU-App gespeichert werden. Das Wartungsintervall kann je nach Anwendung angepasst werden.

Die ALLU-App schätzt den Zeitpunkt der nächsten Wartung gemäß den Betriebsstunden.

4.1 Routinewartung

MARNUNG

Vor betrieblichen Inspektionen und Wartungsarbeiten das Trägergerät abstellen und das Hydrauliksystem drucklos machen. Hierzu den Steuerhebel der Zusatzhydraulik betätigen, während nur der Anlassermotor läuft. Solange der Transformer mit dem Trägergerät verbunden ist, niemals zwischen rotierende Teile greifen.

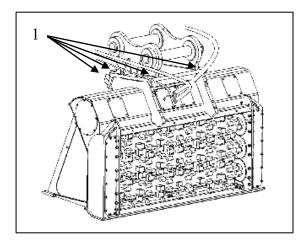


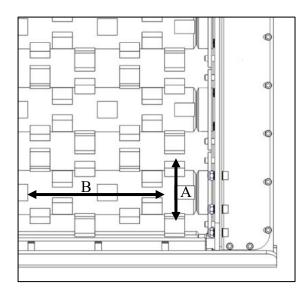
Es besteht Verletzungs-/Lebensgefahr durch rotierende Teile und Austreten von Öl unter hohem Druck.

Jegliche an Komponenten entdeckte Beschädigungen müssen beseitigt werden, bevor die Maschine in Betrieb genommen wird.

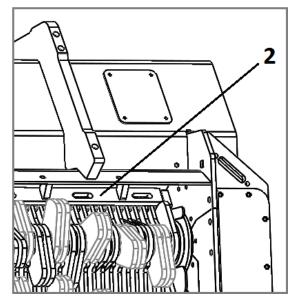
4.1.1 Tägliche Inspektion (8 Stdn.)

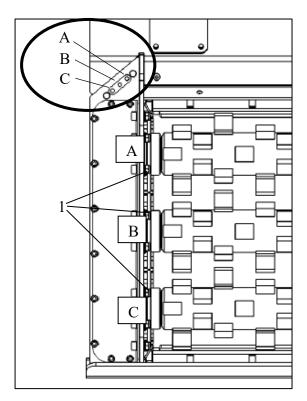
- Sämtliche zwischen den Schlegeln festhängende Steine und andere Objekte entfernen.
- Betriebsschläuche [1] auf
 Beschädigungen und Lecks prüfen.
- Adapter [2] und Adapterbefestigung an Trägergerät und Transformer einer Sichtprüfung unterziehen.
- 4. Zustand und Befestigung von Verschleißteilen [3] prüfen.
- 5. Zustand der Warnschilder [4] prüfen.
- 6. Rahmen auf Schäden (einschl. Risse oder Deformation) prüfen.
- Prüfen, ob alle Abdeckungen verschlossen und alle Schrauben festgedreht sind.


4.1.2 Wöchentliche Inspektion (40 Std.)


HINWEIS

Unter normalen Betriebsbedingungen (Außentemperatur von 20 °C) die Wellenlager einmal wöchentlich oder in Intervallen von 40 Stunden schmieren. Bei ungewöhnlichen Bedingungen (z. B. höhere Außentemperatur, hohe Staubkonzentration oder Feuchtigkeit) sind die Lager entsprechend häufiger zu schmieren.


Zusätzlich zu den Prüfungen der täglichen Inspektion folgende Prüfungen durchführen:


- Mit einem Schraubenschlüssel sicherstellen, dass alle
 Adapterschrauben [1] festgedreht sind.
- 2. Überprüfen Sie die Adapterteile (insbesondere die Haken) oder die Schweißnähte auf Beschädigungen (Risse, Verformungen usw.).

 Axial-/Radialspiel der Wellenlager durch Drücken nach oben und unten [A] der Wellen (max. Gesamttoleranz: 1 mm) und von Seite zu Seite [B] (max. Gesamttoleranz: 2 mm) mit einem Brecheisen prüfen.

4. Den Zustand der unteren und oberen Kontramesserhalter [2] prüfen. Die Kontramesser rechtzeitig austauschen, um einen unnötigen Verschleiß der Kontramesserhalter zu verhindern.

 Wellenlager an beiden Enden schmieren (Abb. zeigt nur linke Seite).
 So viel Schmierfett an jedem Schmiernippel einfüllen bis an den Dichtungen der Staubabdeckungen [1] an den Wellenseiten Schmierfett auszutreten beginnt.

Empfohlenes Lagerfett:

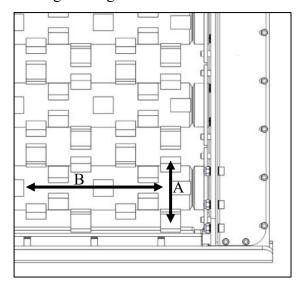
Betriebstemperatur	NLGI-Klasse	
Unter 0 °C	0	
0–25 °C	1	
Über 25 °C	2	

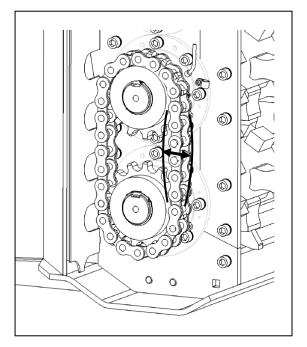
Lager mit Lithiumseifenfetten schmieren. Bei der Herstellung verwendet ALLU Rocol Sapphire 1.

4.2 Umfassende Wartung

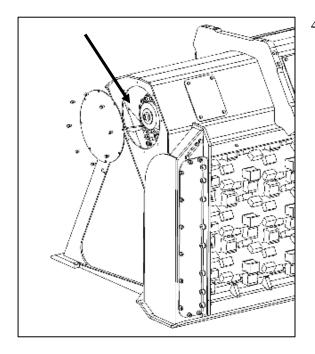
! WARNUNG

Vor Austausch von Verschleißteilen den Transformer vom Trägergerät abkuppeln und das Hydrauliksystem abklemmen, um ein unbeabsichtigtes Anlaufen zu verhindern. Solange der Transformer mit dem Trägergerät verbunden ist, niemals zwischen rotierende Teile greifen.




Bei einem Sturz unter den laufenden Transformer oder Erfasstwerden durch rotierende Teile besteht Verletzungsund Lebensgefahr!

Den Zustand der Wellen und des Antriebsstrangs als einzelne Einheit beurteilen. Es ist häufig empfehlenswert, Wellen und Antriebsstrang zusammen auszutauschen und eine vollständige Welleneinheit einschließlich Lager und Kettenräder einzusetzen (s. Ersatzteilliste).


Anweisungen zum Entnehmen und Montieren der Wellen und des Antriebsstrangs sowie zur Wartung der Lager sind Abschnitt 4.3.7 bis 4.3.9 zu entnehmen.

- Lager warten/austauschen, wenn das Gesamtradialspiel [A] 1 mm bzw. das Gesamtaxialspiel [B] 2 mm übersteigt (s. Abschnitt 4.1.2).
- Den Zustand der
 Lagerschmierschläuche und anschlüsse prüfen. Beschädigte
 Leitungen/Schläuche und Anschlüsse
 reparieren.

3. Ketten und Kettenräder auswechseln, wenn die Ketten ein seitliches Spiel von über 60 mm aufweisen (s. Abb.). Ketten und Kettenräder immer zusammen austauschen.

4. Schmierfett im Antriebsstrang
wechseln. Vor dem Einfüllen neuen
Schmierfetts das alte Schmierfett
ablassen und sämtliche
Verschmutzungen aus dem
Kettenkasten entfernen. Am
einfachsten ist die Zuführung des
neuen Schmierfetts durch die runde
Wartungsöffnung im Kettenkasten bei
geschlossener Rückseite. Die
Abdeckungen mit Silikonkleber
befestigen. Vor Auftragen des
Silikonklebers die Haftflächen
reinigen.

Die Elemente des Antriebsstrangs wurden werkseitig mit Teboil Universal CLS (NLGI-Klasse 00, Schmierfett für Zentralanlagen) geschmiert.

Schmierfettmengen:

Modell	Schmierfettmenge pro Kettenkasten	
DN	3,91	
DS/DH	3,91	

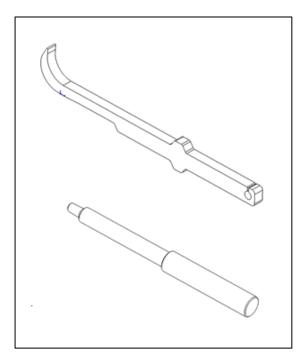
4.3 Austausch von Verschleißteilen

NWARNUNG

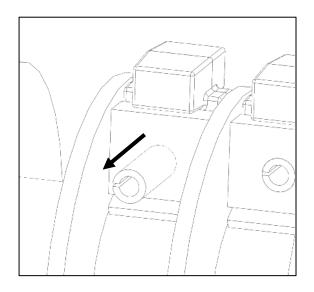
Vor dem Austausch von Verschleißteilen den Transformer vom Trägergerät abkoppeln und das Hydrauliksystem abklemmen, um ein unbeabsichtigtes Anlaufen zu verhindern. Solange der Transformer mit dem Trägergerät verbunden ist, niemals zwischen rotierende Teile greifen.

Bei einem Sturz unter den laufenden Transformer oder Erfasstwerden durch rotierende Teile besteht Verletzungsund Lebensgefahr!

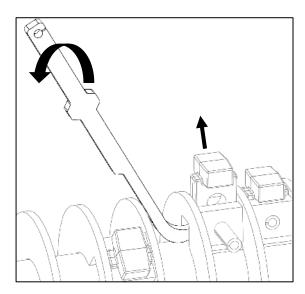
4.3.1 Austausch der Schlegel (Modelle DN, DS und DH mit XHD-Wellen)

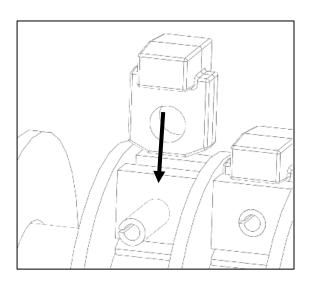

HINWEIS

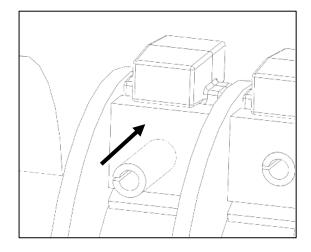
Die Schlegel regelmäßig austauschen, um einen Verschleiß der Schlegelhalter durch verarbeitetes Material zu vermeiden. Die Schlegel müssen spätestens bei Erreichen eines Abstands von 10 mm zwischen Schlegeloberfläche und Halteroberseite ausgetauscht werden.



HINWEIS

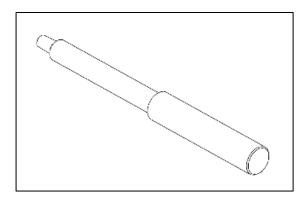

Die neuen Schlegelmodelle sind für Wellen der vor Mai 2016 hergestellten Serie SM und D geeignet. Die alten Schlegel sind hingegen nicht für neue, nach Mai 2016 hergestellte Wellen geeignet.


Erforderliches Spezialwerkzeug: Abzieher für die Schlegel und Dornpresse (im Lieferumfang enthalten). Eine Dornpresse für eine Schlagbohrmaschine ist als Extra erhältlich.

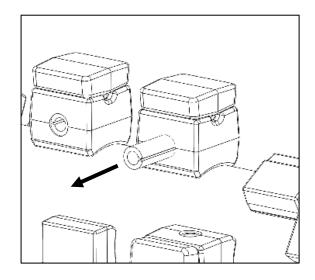

1. Dorn mit der Presse so weit herausdrücken, bis der Schlegel abgenommen werden kann. Der Dorn muss nur dann ganz vom Schlegelhalter abgenommen werden, wenn ein Austausch zusammen mit dem Schlegel erforderlich ist.

Schlegel abnehmen. Zum
 Abnehmen den Schlegel durch
 einen Schlitz in der Seitenplatte
 nach oben drücken.

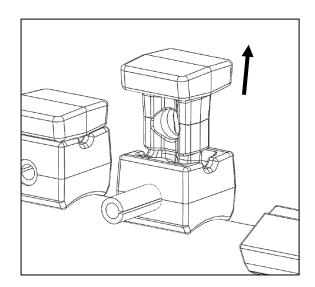
3. Den neuen Schlegel einsetzen.

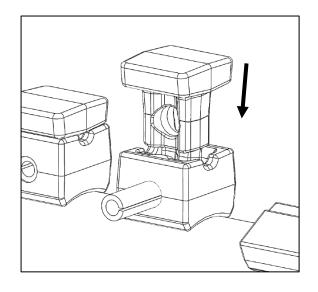

 Den Dorn mit der Dornpresse zurückschlagen. Der Dorn muss mittig auf dem Schlegelhalter sitzen.

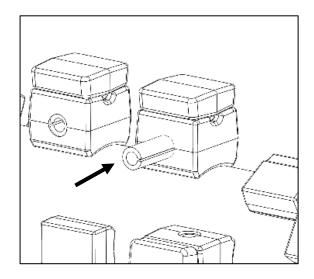
4.3.2 Austausch der Schlegel (Modelle DN, DS und DH mit X-Wellen)



HINWEIS


Die Schlegel regelmäßig austauschen, um einen Verschleiß der Schlegelhalter durch verarbeitetes Material zu vermeiden. Die Schlegel müssen spätestens bei Erreichen eines Abstands von 10 mm zwischen Schlegeloberfläche und Halteroberseite ausgetauscht werden.

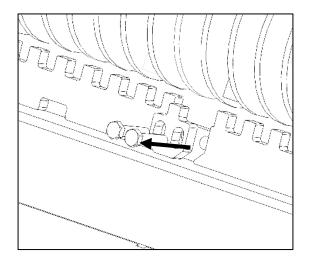

Erforderliches Spezialwerkzeug:
Dornpresse (im Lieferumfang enthalten)
Eine Dornpresse für eine
Schlagbohrmaschine ist als Extra
erhältlich.

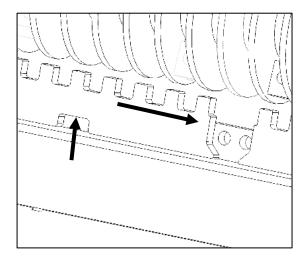

1. Dorn mit der Presse so weit herausdrücken, bis der Schlegel abgenommen werden kann. Der Dorn muss nur dann ganz vom Schlegelhalter abgenommen werden, wenn ein Austausch zusammen mit dem Schlegel erforderlich ist.

 Schlegel abnehmen. Zum Abnehmen den Schlegel durch die Schlitze an den Schlegelhalterseiten nach oben drücken.

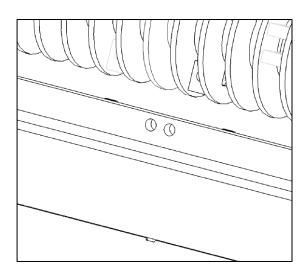
3. Den neuen Schlegel einsetzen.

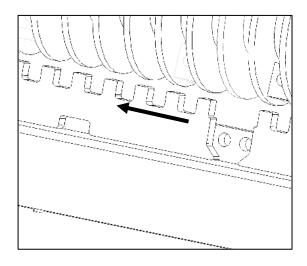
4. Den Dorn mit der Dornpresse zurückschlagen. Der Dorn muss mittig auf dem Schlegelhalter sitzen.

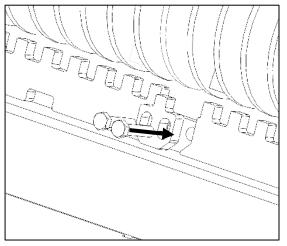

4.3.3 Austausch der Kontramesser (Modelle DN, DS und DH mit XHD- und X-Wellen)


HINWEIS

Die Kontramesser regelmäßig austauschen, um einen Verschleiß der Kontramesserhalter durch verarbeitetes Material zu vermeiden. Die Kontramesser müssen spätestens dann ausgetauscht werden, wenn ihre Oberfläche auf gleicher Ebene wie die der Kontramesserhalter liegt.


Nummer	Komponente	Stückzahl	Hinweis
1	Sechskantschraube M16 × 70, 10.9	2	200 Nm
2	Unterlegscheibe M16	4	
3	Mutter M16	2	
4	Kontramesser	2	
5	Kontramesserverriegelung	1	


 Befestigungsschrauben der Kontramesserverriegelung lösen und Kontramesserverriegelung abnehmen.

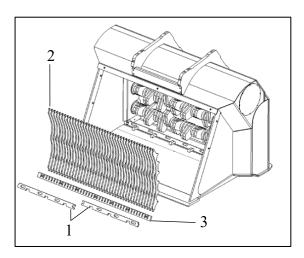

- Kontramesser in Richtung der durch das Abnehmen der Kontramesserverriegelung entstandenen Lücke schieben, an den Vertiefungen ausrichten und vom Rahmen drücken.
- 3. Kontramesser abnehmen.

4. Kontramesserhalter prüfen und ggf. reparieren.

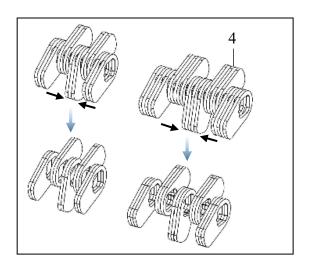
 Kontramesser auf die Kontramesserhalter setzen und in die Einbauposition drücken. Die Zähne der Kontramesserenden müssen unter den Kontaktflächen sitzen.

6. Die Kontramesserverriegelung einsetzen, die Befestigungsschrauben installieren und festdrehen.

4.3.4 Austausch von Verschleißteilen in TS-Modellen und Anpassung der Korngröße

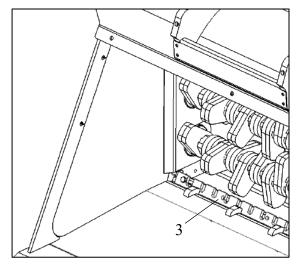

Nummer	Komponente	Hinweis
1	Sicherungsplatte	
2	Siebkamm	
3	Abstandselement	
4	Schlegel	
5	Sechskantschraube M16 × 80, 8.8	
6	Unterlegscheibe M16 × 40	
7	Unterlegscheibe $70 \times 50 \times 5$	Unterhalb der mittleren
8	Mutter M16	

Bei TS-Modellen kann die Siebfeinheit durch Änderung der Schlegel-/Siebkammausrichtung verdoppelt/halbiert oder verdreifacht/auf ein Drittel reduziert werden. Die Wellen müssen hierfür nicht ausgebaut werden. Die Korngröße wird entweder durch die Breite eines Schlegels oder die Gesamtbreite zweier oder dreier Schlegel bestimmt.

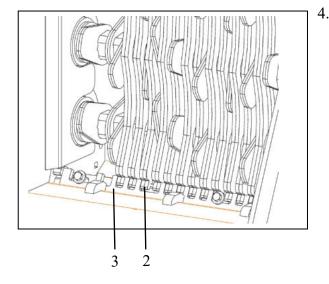

Die Korngröße kann folgendermaßen eingestellt werden:

- 1. TS08_16 (Einzelschlegel, muss verdoppelt werden) ←→ TS16_08 (Doppelschlegel)
- 2. TS08_24 (Einzelschlegel, muss verdreifacht werden) ←→ TS24_08 (Dreifachschlegel)
- 3. TS16_32 (Einzelschlegel, muss verdoppelt werden) ←→ TS32_16 (Doppelschlegel)
- 4. TS16_48 (Einzelschlegel, muss verdreifacht werden) ←→ TS48_16 (Dreifachschlegel)
- 5. TS25_50 (Einzelschlegel, muss verdoppelt werden) ←→ TS50_25 (Dreifachschlegel)
- 6. TS25_75 (Einzelschlegel, muss verdreifacht werden) ←→ TS75_25 (Dreifachschlegel)
- 7. TS35_70 (Einzelschlegel, muss verdoppelt werden) ←→ TS70_35 (Doppelschlegel)
- 8. TS35_105 (Einzelschlegel, muss verdreifacht werden) ←→ TS105_35 (Dreifachschlegel)

Die einzige Komponente, die zum Ändern der Korngröße ausgetauscht werden muss, ist das Abstandselement [3]. Unabhängig vom Transformermodell ist ein zusätzlicher Siebkamm [2] erforderlich, wenn größere Korngrößen gewünscht werden. Im nächsten Abschnitt werden die Arbeitsschritte der Korngrößenanpassung beschrieben (zum Beispiel TS08_16 → TS16_08 oder TS08_24 → TS24_08).

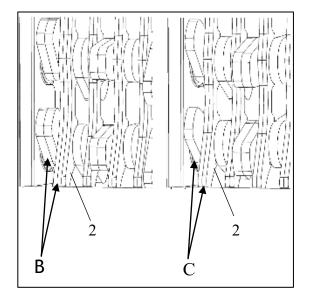


1. Sicherungsplatten [2], Siebkämme [3] und Abstandselemente [3] ausbauen.

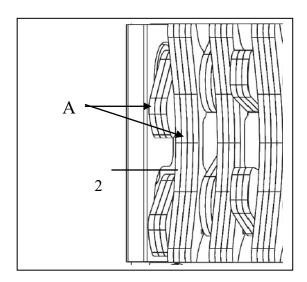


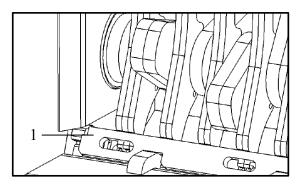
 Steigern der Korngröße: Parallele Schlegel [4] durch Verschieben an der Welle nebeneinander anordnen.

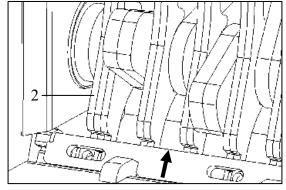
Reduzieren der Korngröße: Alle Schlegel voneinander trennen.


3. Abstandselemente [3] gemäß der gewünschten Korngröße einsetzen. Die Abstandselemente mit einer oder zwei Schrauben provisorisch für den Einbau der Siebkämme fixieren.

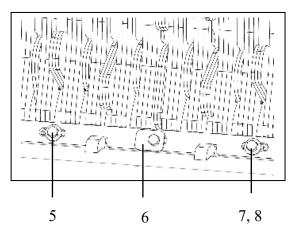
Einstellen der Korngröße,
 Verdoppelung und Verdreifachung:
 Jeweils zwei oder drei Siebkämme [2]
 so zwischen alle nicht parallel
 stehenden Schlegelpacks einsetzen,
 dass die Siebkammenden in den
 Schlitzen der Abstandselemente sitzen
 [3].


Reduzieren der Korngröße: Zwischen alle Schlegelpaare einen einzelnen Siebkamm einsetzen.


Beim Einsetzen der Siebkämme von der Mitte aus zu den Seiten hin arbeiten.


5. An den Außenseiten enden die Schlegel- und Siebkammpacks modellabhängig (A, B oder C) mit ein, zwei oder drei Schlegeln. Entsprechend enden die Siebkammpacks [2] an der Außenseite mit Packs aus vier oder fünf Siebkämmen (zur Verdreifachung), Packs aus drei Siebkämmen (bei Modellen mit zwei Schlegeln an der Außenseite) oder zwei Siebkämmen (bei Modellen mit einem Schlegel an der Außenseite). Ein modellspezifisches Abstandselement ([3] in der vorherigen Abbildung) gewährleistet, dass die richtige Zahl Siebkämme in die richtigen Schlitze eingesetzt wird.

Auf gleichmäßige Toleranzen entlang des gesamten Löffels achten.

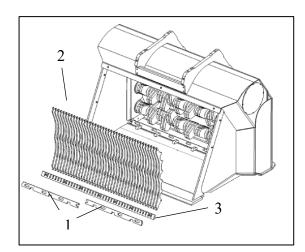


6. Sicherungsplatten [1] einbauen.

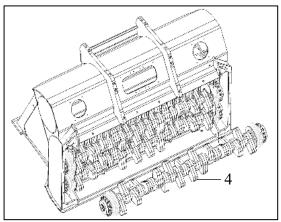
Zum Vermeiden eines großen Abstands zwischen Platte und Siebkamm [2] die Sicherungsplatte nach oben schieben.

7. Befestigungsschrauben [5], Muttern [8] und Unterlegscheiben [6, 7] einsetzen und festziehen. Die Unterlegscheibe [7] wird zwischen den Sicherungsplatten angebracht. Der Anziehdrehmoment der Schrauben ist 200 Nm.

4.3.5 Austausch der Schlegel (TS-Serie)

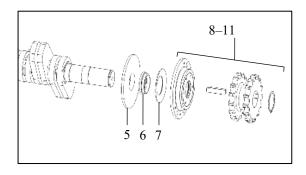


A VORSICHT

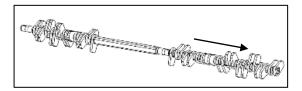

Beim Öffnen des Kettenkastens zur Minimierung des Risikos einer Kontamination der Umwelt mit Hydrauliköl Wannen und saugfähiges Material bereithalten.

Nummer	Komponente	Hinweis
1	Sicherungsplatte	
2	Siebkamm	
3	Abstandselement	

4	Trommel	
5	Endflansch	
6	Reduzierhülse	
7	Staubabdeckung	
8	Lagereinheit	
9	Sechskantschraube M16 × 80, 8.8	
10	Unterlegscheibe M16 × 40	
11	Unterlegscheibe $70 \times 50 \times 5$	Unterhalb der mittleren Schraube
12	Mutter M16	



 Sicherungsplatten [1], Siebkämme [2] und Abstandselemente [3] vom Transformer entfernen.



2. Sicherungsplatten [1], Siebkämme [2] und Abstandselemente [3] vom Transformer entfernen.

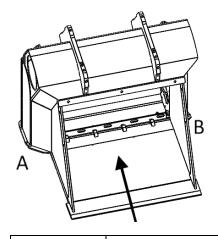
Wellen [4] wie in Abschnitt 4.3.8 beschrieben ausbauen.

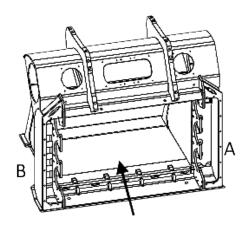
- Kettenräder und Lagereinheiten [8– 11] von den Wellen abbauen, entsprechend den Anweisungen in Abschnitt 4.3.8.
- 4. Teile 5–7 von den Wellen abbauen.

5. Schlegel von der Welle herunterschieben.

4.3.5.1 Aufsetzen der neuen Schlegel

Die Schlegel sitzen spiralförmig auf der Welle, sodass Material in der normalen Drehrichtung von den Seiten des Transformers zur Mitte hin transportiert wird.

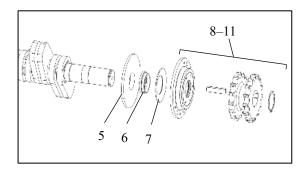

Beim Aufsetzen der Schlegel in der Mitte der Welle mit Schlegel Nr. 1 beginnen.

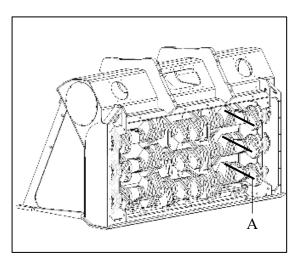

Zahl der Schlegel pro Welle:

Trommel	Schlegel-Modell			
	TS08	TS16	TS25	TS35
D-12	51	36	28	20
D-17	75	54	42	30
D -23	100	72	54	40

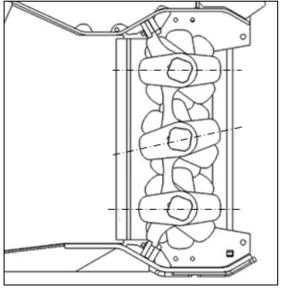
Die Anzahl der Siebkämme je Maschine ist im Ersatzteilhandbuch angegeben. Die Siebkämme werden in Übereinstimmung mit dem Installationsbild eingebaut.

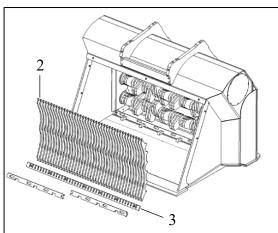
Die Seiten A und B sind in den Installationsbildern der Schlegel und Siebkämme markiert. Diese Markierungen zeigen die Richtung, in der die Teile am Maschinenrahmen montiert werden.

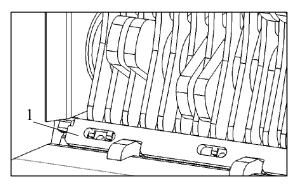


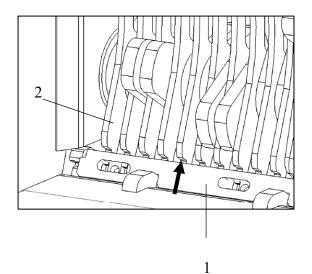

HINWEIS

Beim Einbau von Schlegeln und Wellen sorgfältig auf die richtige Position achten. Durch eine falsche Einbauposition kann es zur Kollision von Schlegeln benachbarter Wellen kommen.


4.3.5.2 Einbau der Wellen (TS-Serie)


- Komponenten 5–7 einbauen
 (Endflansch [5] und Reduzierstück [6]
 mit nicht aushärtendem
 Schraubensicherungslack an der Welle anbringen).
- 2. Komponenten 8–11 gemäß den Anweisungen in Abschnitt 4.3.8 einbauen.


 Wellen gemäß den Anweisungen in Abschnitt 4.3.8 einbauen.
 Sicherstellen, dass die Spiralanordnung [A] wie abgebildet ausgeführt ist, sodass die Wellen in der richtigen Position eingebaut werden.

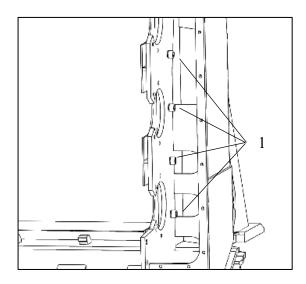

4. Die in einer Linie ausgerichteten
Schlegel der Welle müssen parallel
zueinander positioniert werden, bevor
die Kette eingebaut wird. Die
Anordnung der Kettenglieder sorgt für
eine Ausrichtung der benachbarten
Wellen in der abgebildeten Position.

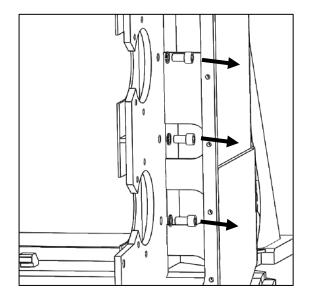
- 5. Abstandselemente einbauen [3].
- 6. Siebkämme [2] gemäß den
 Anweisungen in Abschnitt 4.2.3
 einsetzen. Beim Einsetzen der
 Siebkämme von der Mitte aus zu den
 Seiten hin arbeiten. Siebkämme mit
 höherem Verschleiß an einer Seite
 können umgedreht werden.

7. Sicherungsplatten [1] einbauen.

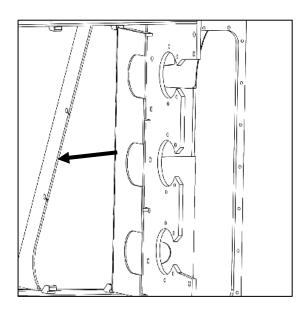
Zum Vermeiden eines großen Abstands zwischen Platte und Siebkamm [2] die Sicherungsplatte [1] nach oben schieben.

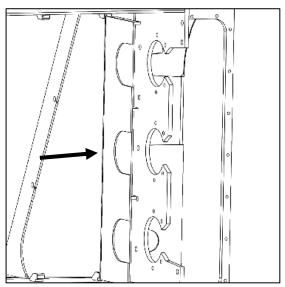
Verwenden Sie nur Montagehalterungen in gutem Zustand. Verschlissene, verbogene und rostige Schrauben, Unterlegscheiben und Muttern müssen ausgetauscht werden.

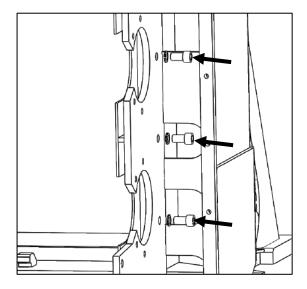

4.3.6 Austausch des Lagerschutzblechs


⚠ VORSICHT

Beim Öffnen des Kettenkastens zur Minimierung des Risikos einer Kontamination der Umwelt mit Hydrauliköl Wannen und saugfähiges Material bereithalten.


Nummer	Komponente	Hinweis
1	Sechskantschraube M16 × 30, 10.9	200 Nm
2	Verriegelungsplatte NL16	
3	Lagerschutzblech	_

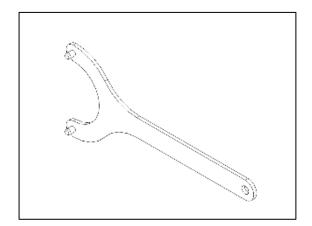

Die Befestigungsschrauben [1] des
Lagerschutzblechs sind im
Kettenkasten in einer senkrechten
Reihe angeordnet. Die Abbildung zeigt
die Komponente zur Verdeutlichung
bei ausgebauten Wellen. Das
Lagerschutzblech kann jedoch ohne
Ausbau der Wellen ausgetauscht
werden.

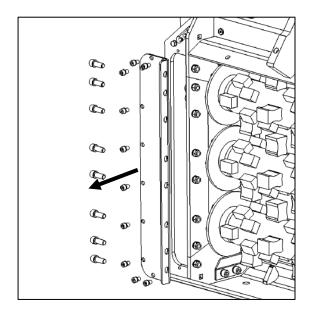

1. Befestigungsschrauben lösen.

2. Lagerschutzblech abnehmen. Darauf achten, dass das Blech nicht umfällt.

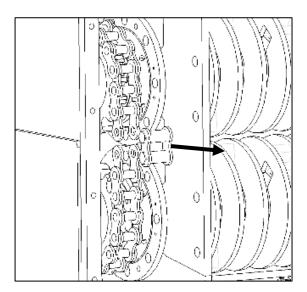
3. Lagerschutzblech einsetzen. Blech abstützen, damit es nicht umfällt.

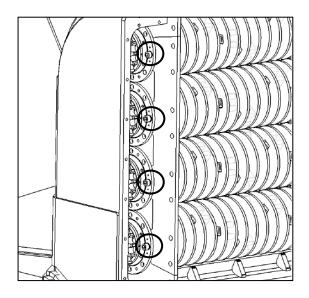
4. Befestigungsschrauben installieren.
Schraubensicherungslack (aushärtend)
verwenden.

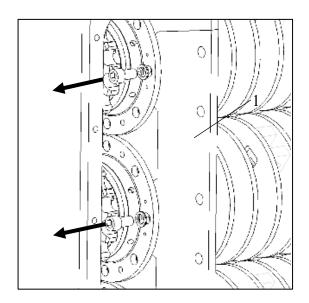

4.3.7 Austausch der Wellen

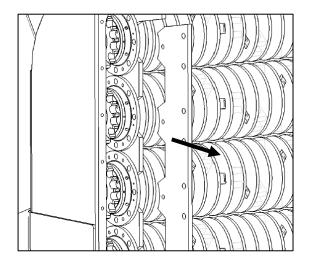

⚠ VORSICHT

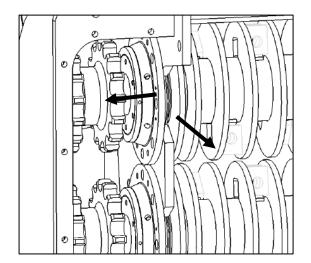
Beim Öffnen des Kettenkastens zur Minimierung des Risikos einer Kontamination der Umwelt mit Hydrauliköl Wannen und saugfähiges Material bereithalten.


Nummer	Komponente	Hinweis
1	Sechskantschraube M16 × 30, 10.9	200 Nm
2	Verriegelungsplatte (NL16)	
3	Wellen	

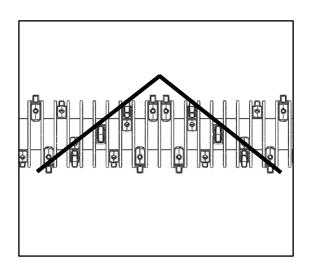

Erforderliches Spezialwerkzeug: Lagerdeckelschlüssel (im Lieferumfang enthalten)


 Die Befestigungsschrauben der Kettenkastenabdeckungen lösen und die Abdeckungen abnehmen. Die Kettenkästen enthalten Schmierfett. Beim Abnehmen der Abdeckungen kann etwas Schmierfett austreten.

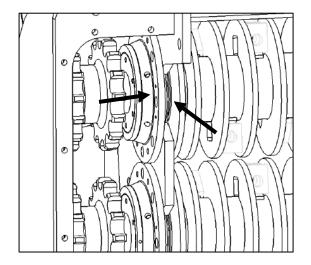

2. Kettenschlösser öffnen und die Ketten abnehmen.


 Schmiermittelschläuche von der Lagereinheit lösen.

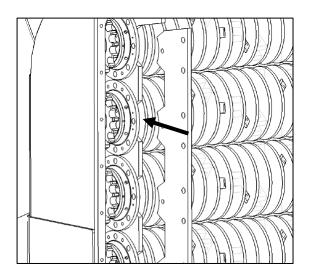
4. Schrauben an den Lagereinheiten, mit denen die Rückseitenplatten [1] fixiert sind, lösen.



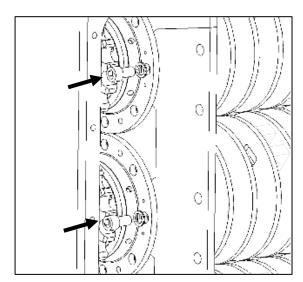
5. Rückseitenplatten abnehmen.

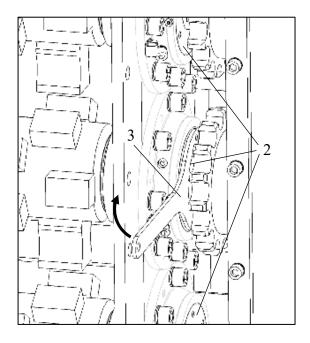


- Schrauben der Lagereinheiten lösen und die Lagereinheiten durch die Schlitze in den Seitenwänden entnehmen.
- 7. Welle abnehmen.

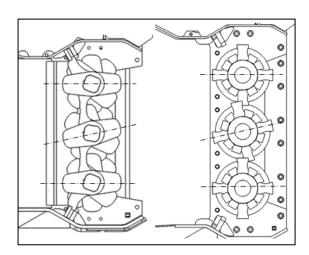

Die Welle mit einer geeigneten Hebevorrichtung sichern, damit sie nicht herabfallen kann!

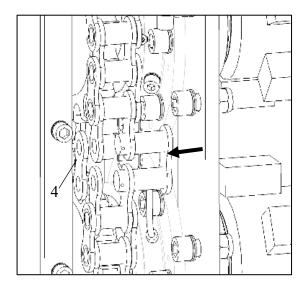
8. Die neue Welle einsetzen. Darauf achten, dass die Welle richtig herum eingesetzt wird. Von der Einbaurichtung aus betrachtet müssen die Schlegel konisch zulaufen.


- 9. Die Lagereinheiten im Rahmen einsetzen. Die Deckel der Lagereinheiten dürfen nicht festgedreht sein. Sie müssen sichtbar lose sein!
- Befestigungsschrauben der Lagereinheiten installieren.

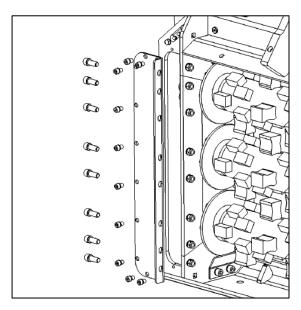

11. Rückseitenplatten einsetzen.

Die Platten mit Silikonkleber


befestigen. Silikon auf die Flächen an
Rahmen und Platten auftragen, die
aneinander liegen.


12. Schrauben der Rückseitenplatten installieren.

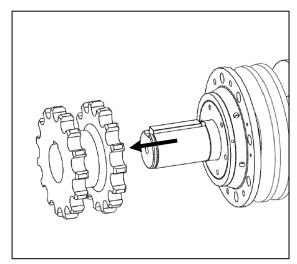
- 13. Lagerdeckel [2] mit dem Lagerdeckelschlüssel [3] festdrehen. Die Welle muss mittig im Rahmen ausgerichtet sein. Ein Axialspiel von ca. 1 mm lassen.
- 14. Die Deckel mit einer Stellschraube mit Mutter fixieren. Zuvor für die Spitze der Stellschraube mit einem 4-mm-Bohrer ein 2 mm tiefes Loch in die Gewindebohrung im Deckel bohren.
- 15. Schmiermittelschläuche an die Lagereinheiten anschließen.



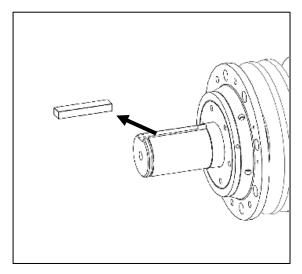
16. Bei den Modellen DN, DS, DSH und DH müssen die in einer Linie ausgerichteten Schlegel parallel zueinander ausgerichtet werden, bevor die Kette eingebaut wird. Die Anordnung der Kettenglieder sorgt für eine Ausrichtung der benachbarten Wellen in der abgebildeten Position.

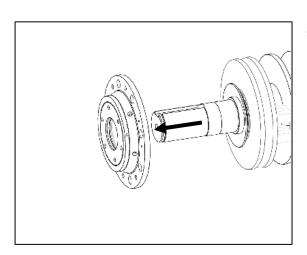
17. Ketten und Kettenschlösser einbauen.

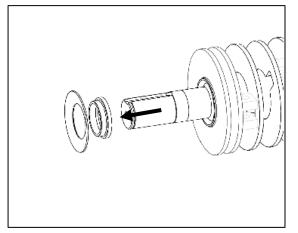
Die Außenlasche [4] und die Bolzen
des Kettenschlosses werden von der
seitlichen Außenwand des
Kettenkastens her eingebaut.

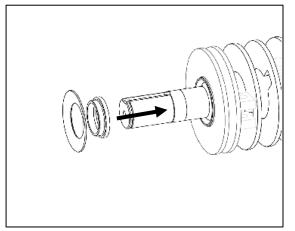


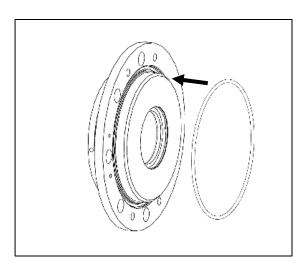
18. Abdeckungen anbringen. Die Abdeckungen mit Silikonkleber befestigen. Vor Auftragen des Silikonklebers die Haftflächen reinigen.

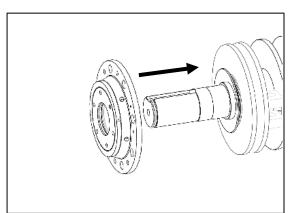

4.3.8 Aus- und Einbau von Lagern und Kettenrädern

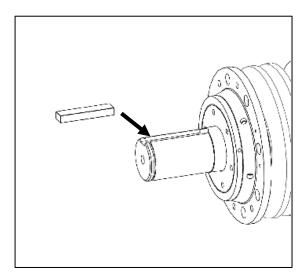

1. Sicherungsring des Kettenrads abnehmen.

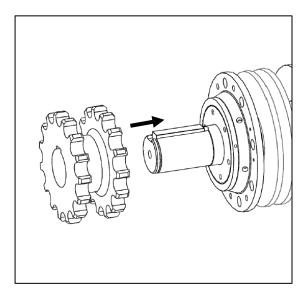

2. Kettenrad mit einem Abzieher lösen.

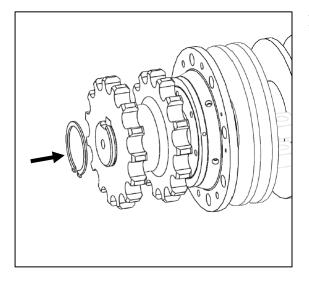

3. Klemmstück abnehmen.


4. Lagereinheit mit einem Abzieher von der Welle ziehen.

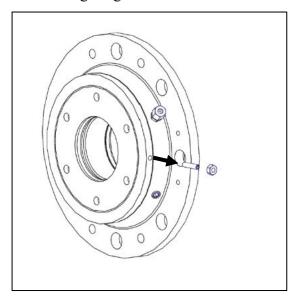

- 5. Dichtungsplatte und Kragenring vom Wellenende abnehmen.
- 6. Die Nut am Wellenende sorgfältig reinigen, dabei jegliche Dichtungsrückstände entfernen.

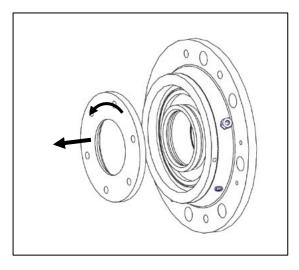

7. Neuen Kragenring und neue
Dichtungsplatte auf der Welle
anbringen. Den Kragenring mit
Dichtmittel o. Ä. fixieren, um ein
Drehen zu vermeiden.


8. Einen neuen O-Ring für die Lagereinheit anbringen.

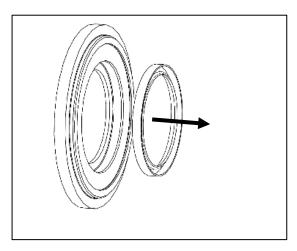

9. Die Lagereinheiten auf die Welle aufsetzen. Darauf achten, dass die Dichtung des Lagerdeckels nicht beschädigt wird.

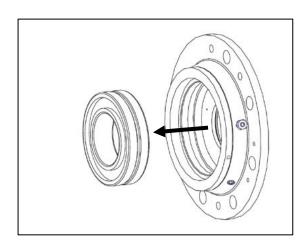
10. Klemmstück einsetzen.

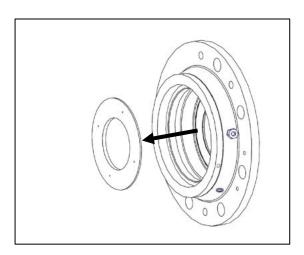

11. Welle schmieren und Kettenrad aufsetzen.

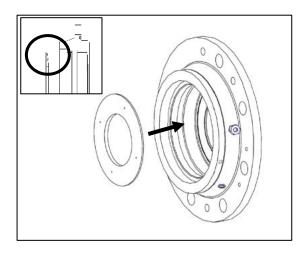

12. Sicherungsring des Kettenrads anbringen.

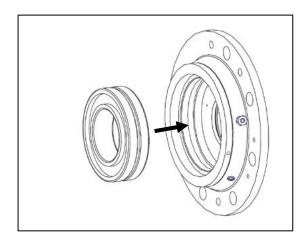
4.3.9 Wartung der Lagereinheit

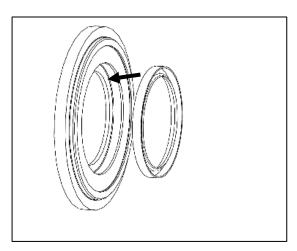

Bei Verschleiß kann die gesamte Lagereinheit oder, sofern der Rahmen intakt ist, das Lager mit Dichtung ausgetauscht werden.

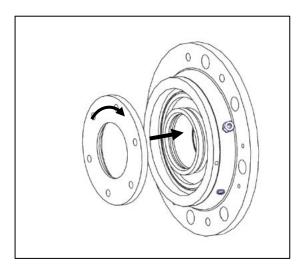

1. Stellschraube und zugehörige Mutter lösen.

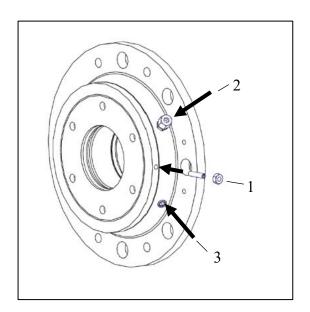

2. Lagerdeckel losdrehen.


3. Radialwellendichtring abnehmen.


4. Lager aus dem Gehäuse nehmen.


5. Dichtplatte abnehmen.


6. Neue Dichtplatte einsetzen. Auf die richtige Ausrichtung – parallel zum Lager – achten!


7. Neues Lager einsetzen.

8. Neuen Radialwellendichtring am
Lagerdeckel anbringen. Darauf achten,
dass die Dichtung richtig herum
aufgesetzt wird.

9. Lagerdeckel lose aufsetzen. Noch nicht festdrehen!

- 10. Stellschraube und Mutter [1] lose einsetzen, jedoch vor Ausrichten der Wellen nicht festdrehen.
- 11. Schmiermittelanschluss [2] undSechskantkappen [3] anbringen.Gewindedichtungsmittel verwenden.

4.4 Störungsbeseitigung

MARNUNG

Vor jeder Inspektion, dem Öffnen oder Anschließen von Schlauchverbindungen oder der Prüfung beweglicher Komponenten das Trägergerät abstellen und das Hydrauliksystem drucklos machen. Hierzu den Steuerhebel der Zusatzhydraulik betätigen, während nur der Anlassermotor läuft. Solange der Transformer mit dem Trägergerät verbunden ist, niemals zwischen rotierende Teile greifen.

Es besteht Verletzungs-/Lebensgefahr durch rotierende Teile und Austreten von Öl unter hohem Druck.

Bei Inspektionen des Schaufelseparators in einer Gefahrenzone entsprechende Vorsichtsmaßnahmen treffen!

NORSICHT

Bei Inspektion bzw. Anschließen des Hydrauliksystems zur Vermeidung einer Kontamination der Umwelt mit Hydrauliköl Wannen und saugfähiges Material bereithalten.

Mögliche Probleme und Anweisungen zu deren Lösung enthält die ALLU-App.

Transformerwellen drehen sich nicht oder Transformer liefert nicht genügend Kraft:

- Prüfen, ob sich Materialfragmente zwischen Wellen und feststehenden Komponenten verfangen haben und ob Komponenten sich gelöst haben.
- Sicherstellen, dass beide Betriebsschläuche richtig angeschlossen sind.
- Transformer mit Leckölleitung: Antrieb(e) auf interne Lecks prüfen. Hierfür die Leckölleitung abklemmen und Wellen anlaufen lassen. Spritzt eine große Menge Öl aus dem Anschluss der Leckölleitung, ist der Hydraulikantrieb beschädigt.
- Transformer mit Leckölkompensator: Antriebsleckölleitung am Anschluss DR des Kompensatorventils (hinter der rechten Rückseitenplatte) abklemmen und Wellen anlaufen lassen. Spritzt eine große Menge Öl aus der Leckölleitung, liegt Verschleiß am Hydraulikantrieb vor.
- Transformer mit Doppelantrieb: Bewegen sich die Wellen überhaupt nicht, die Ketten beider Antriebe lösen und die Wellen anlaufen lassen. Prüfen, ob beide Antriebswellen sich drehen. Bewegt sich eine der Wellen nicht, kann der zugehörige Hydraulikantrieb beschädigt sein.
- Den Druck an Anschluss MA und MB (geschlossene G1/4"-Anschlüsse zwischen den Betriebsanschlüssen) unter Drehen der Wellen des leeren Transformers in beide Richtungen messen. Übersteigt der Betriebsdruck 80 bar, und der Gegendruck liegt unter 40 bar, liegt eine Blockade der Wellen vor.
- Den Druck an Anschluss MA und MB bei Betrieb des blockierten Transformers in beiden Drehrichtungen messen. Wenn der Transformer blockiert ist, muss der maximale Druck bei ca. 280-300 bar oder, wenn das Trägergerät auf einen Druck unter 280 bar eingestellt ist, bei 280 bar liegen. Ist der Druck deutlich niedriger, kann ein Problem am Überlastventil (DPV) oder am Hydraulikantrieb vorliegen.

 Kann der Fehler so nicht gefunden werden, oder liegt potenziell ein Problem am Hydraulikantrieb oder am Überlastventil vor, den Repräsentanten von ALLU verständigen.

2. Ölleck am Sieb neben den Betriebsanschlüssen (Sicherheitsventil des Leckölkompensators):

- Druck am Messpunkt des Kompensatorventils messen. Das Ventil befindet sich hinter der rechten Rückseitenplatte. In folgenden Situationen muss der Druck unter 30 bar liegen:
 - Motor des Trägergeräts läuft im Leerlauf und Ausleger bzw. Transformer ist nicht in Betrieb.
 - O Wellen des leeren Transformers werden in eine beliebige Richtung gedreht.
 - Wellen des leeren Transformers werden in beide Richtungen gedreht während der Trägergerätausleger in Betrieb ist.
- Übersteigt der Druck 60 bar, und es tritt eine kleine Menge Öl aus, funktioniert das Sicherheitsventil des Kompensators ordnungsgemäß. In diesem Fall wird das Leck durch den hohen Druck in der Rückführungsleitung des Trägergeräts ausgelöst und kann nur durch Ausbau des Kompensators und Einbau einer Niederdruck-Rückführungsleitung beseitigt werden. Den Repräsentanten von ALLU verständigen.
- Bleibt der Druck unter 30 bar, und es tritt bei beiden Drehrichtungen Öl aus, ist das Sicherheitsventil des Kompensators blockiert oder beschädigt. Tritt nur bei einer Drehrichtung Öl aus, ist eines der Rückschlagventile des Kompensators blockiert. Ventile ausbauen und reinigen (s. Ersatzteilliste) oder den Repräsentanten von ALLU verständigen.
- 3. Trägergerät verliert Hydrauliköl und/oder Ölleck am Kettenkasten oder oberen Gehäuse des Transformers

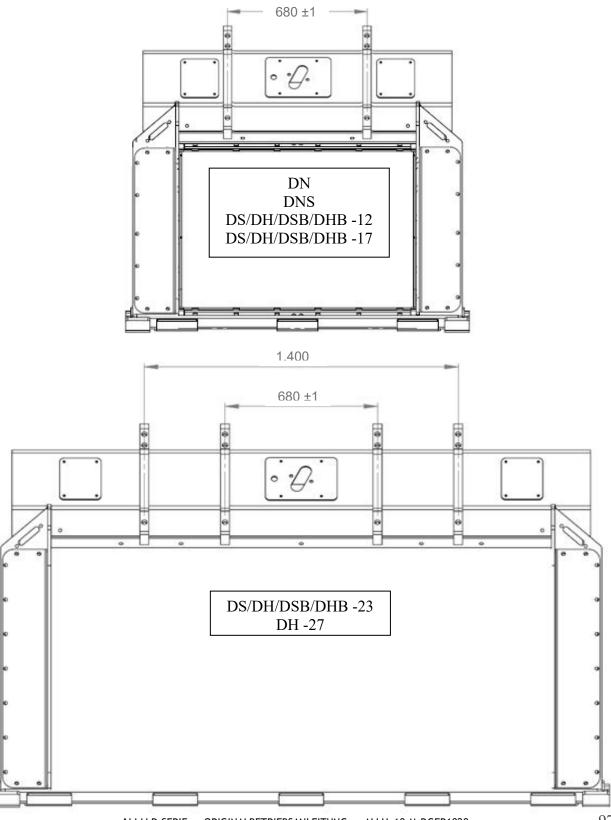
 Runde Seitenabdeckungen des Kettenkastens abnehmen (bei Modellen mit Einzelantrieb nur die von hinten gesehen linke Abdeckung abnehmen) und die Wellen anlaufen lassen. Tritt Öl an der Unterseite der Hydraulikantriebswelle aus, ist die Axialdichtung des Antriebs beschädigt. Den Repräsentanten von ALLU verständigen.

4.5 Entsorgung

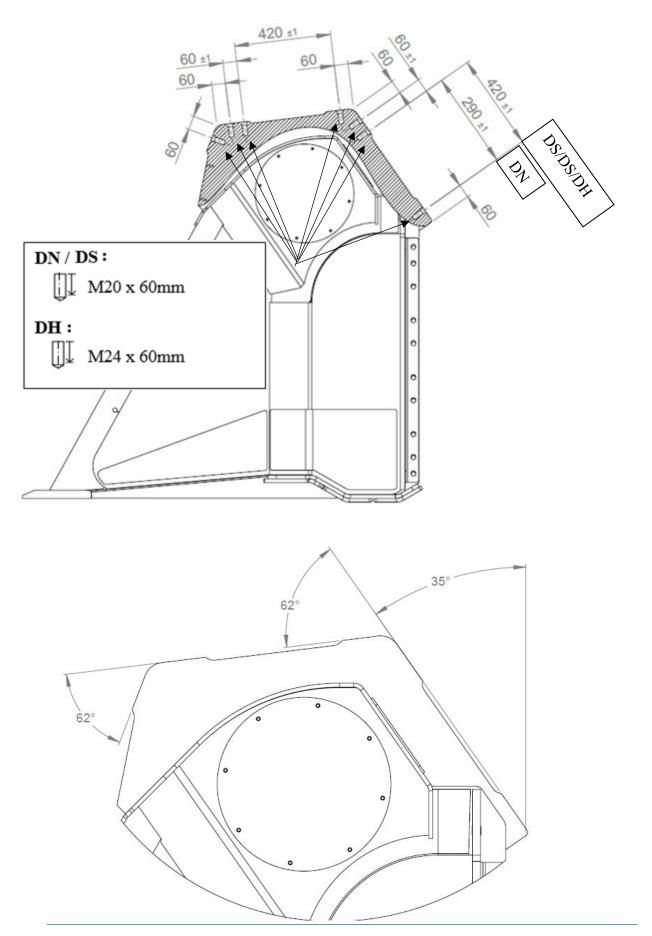
A VORSICHT

Bei Abklemmen des Hydrauliksystems und Demontage des Transformers zur Vermeidung einer Kontamination der Umwelt mit Hydrauliköl Wannen und saugfähiges Material bereithalten.

Der Transformer besteht zum großen Teil aus recycelbarem Metall. Vor der Demontage der Maschine folgende Schritte ausführen:

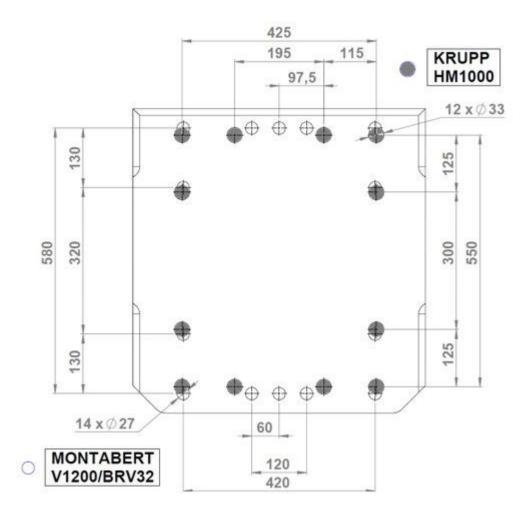

- Hydrauliköl aus Schläuchen und Antrieb ablassen.
- Schmiermittel aus dem Kettenkasten entfernen.
- Sämtliche internen Hydraulikschläuche und Schmiermittelleitungen abnehmen.

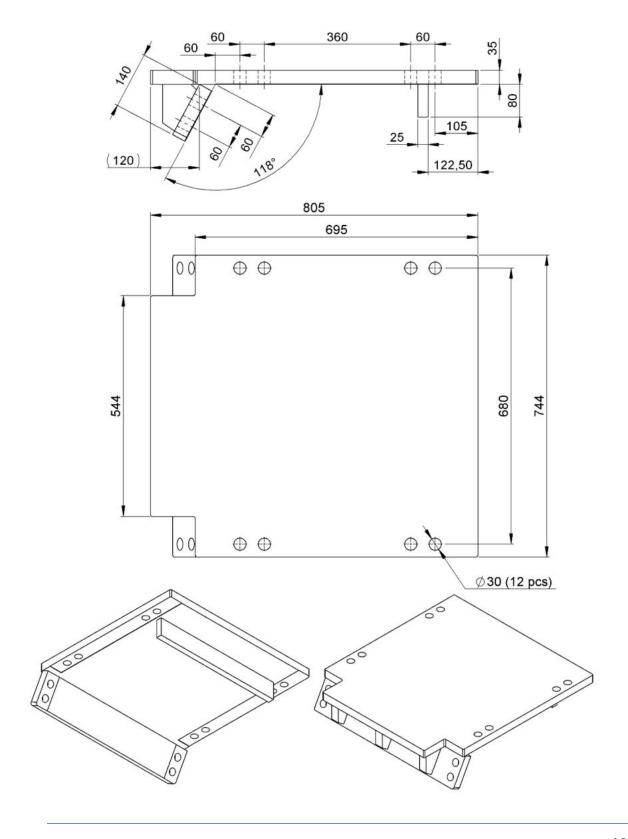
Metall, ölverschmutzte Leitungen und Altöl gemäß örtlicher Bestimmungen entsorgen bzw. dem Recycling zuführen.


Der ALLU-Sensor ist mit einer Lithium-Thionylchlorid-Batterie ausgestattet, die gemäß den vor Ort geltenden Richtlinien entsorgt werden muss.

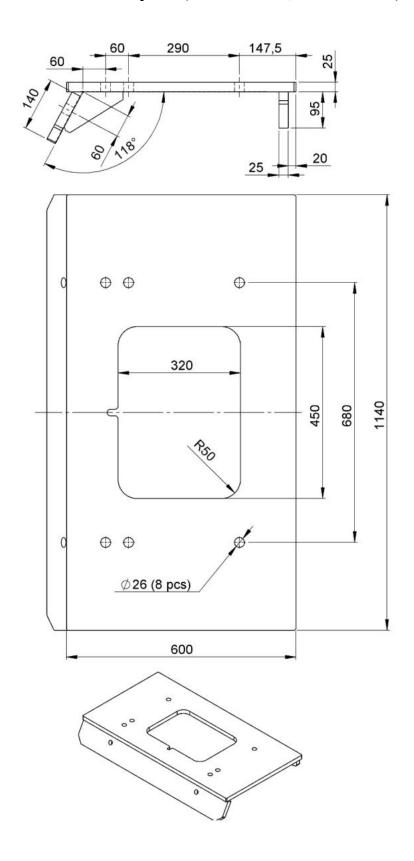
5 TECHNISCHE BESCHREIBUNG

5.1 Anbaumaße

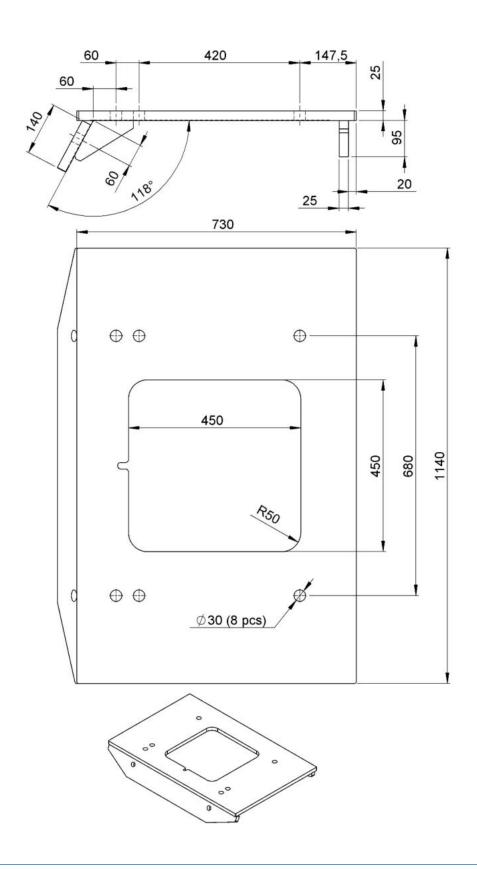

97

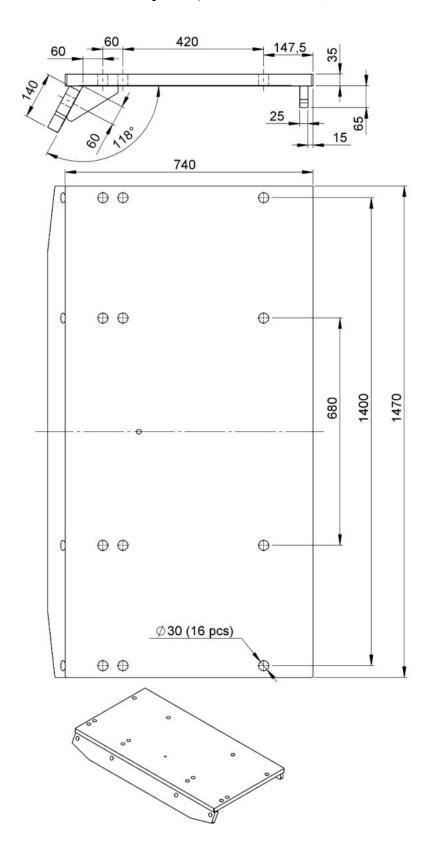

HINWEIS

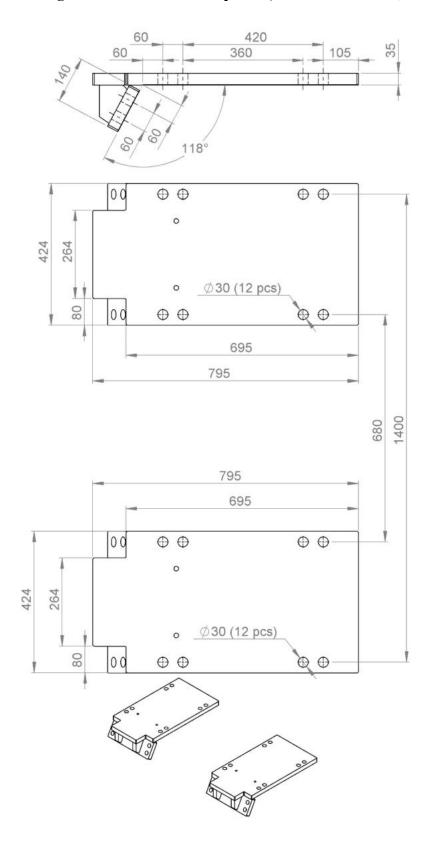
Die dunkler dargestellten Abmessungen in der technischen Zeichnung unten entsprechen der Bohrungsanordnung für den KRUPP HM 1000. Die heller dargestellten Abmessungen entsprechen der Bohrungsanordnung für den Montabert V 1200/BRV 32.

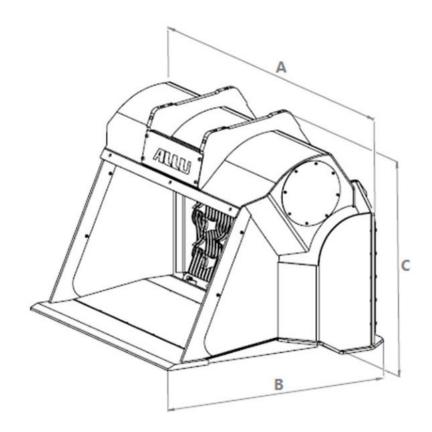


5.2 Abmessungen der Basisplatte


5.2.1 ALLU-Baggerbasisplatte (DN/DS/DH -09, -12 und -17, breite Modelle)


5.2.2 ALLU Radladerbasisplatte (DN-12 und -17, breite Modelle)


5.2.3 ALLU Radladerbasisplatte (DS/DH-12 und -17, breite Modelle)


5.2.4 ALLU Radladerbasisplatte (DS/DH-23 und -27, breite Modelle)

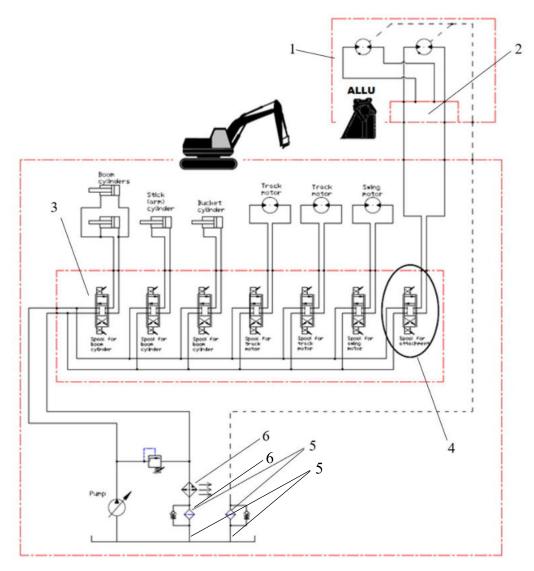
5.2.5 Zweiteilige ALLU-Radladerbasisplatte (DS/DH-23 und -27, breite Modelle)

5.3 Technische Daten

			X/XHD		TS			Siebb		Gewicht
	Bagger	Radlader	Hydraulikf luss	Hydrauli kantrieb e	Hydraulikfl uss	Hydraul ikantrie be	Volumen	ereic h	Abmessungen (C x B x A)	(ohne Adapter und Zubehör)
	t	t	l/min	Stückza hl	I/min	Stückza hl	m³	m²	cm	kg
DN										
DN 2-09	10–28	4–14	70–120	1	-	-	0,40/0,49	0,5	111 × 128 × 125	940–1.000
DN 2-12	12–28	6–14	70–120	1	95–160	1	0,52/0,66	0,6	111 × 128 × 151	1.070-1.210
DN 2-17	15–28	7–14	70–120	1	95–160	1	0,76/0,99	0,9	111 × 128 × 205	1.330-1.510
DN 3-09	12–28	6–14	70–120	1	-	-	0,60/0,75	0,7	136 × 140 × 125	1.150-1.310
DN 3-12	16–28	7–14	95–160	1	120–200	1	0,79/1,01	0,9	136 × 140 × 151	1.330-1.530
DN 3-17	20–28	7–14	95–160	1	120–200	1	1,15/1,53	1,4	136 × 140 × 205	1.730-1.930
DS										
DS 3-12	16–35	8–22	95–160	1	120–200	1	0,83/1,04	0,9	144 × 151 × 161	1.570-1.720
DS 3-17	20–35	10–22	95–160	1	120–200	1	1,22/1,57	1,4	144 × 151 × 215	1.920–2.170
DS 3-23	24–35	12–22	120–200	1	140-235	2	1,61/2,10	1,7	144 × 151 × 269	2.350-2.730
DS 4-12	20–35	10–22	95–160	1	120–200	1	1,24/1,56	1,2	169 × 175 × 161	1.860-2.080
DS 4-17	24–35	12–22	120–200	1	140-235	2	1,82/2,38	1,7	169 × 175 × 215	2.240–2.590
DS 4-23	30-35*	14–22	190–315	2	190–315	2	2,40/3,21	2,3	169 × 175 × 269	2.980-3.440
DH										
DH 3-12	18–45	8–30	140-235	2	190–315	2	0,85/1,07	0,9	145 × 153 × 161	1.890-2.080
DH 3-17	22–45	10–30	140-235	2	190–315	2	1,25/1,61	1,4	145 × 153 × 215	2.330–2.570
DH 3-23	26–45	14–30	140-235	2	190–315	2	1,65/2,16	1,7	145 × 153 × 269	2.870-3.170
DH 4-12	22–45	10-30	140–235	2	190–315	2	1,26/1,59	1,2	170 × 177 × 161	2.240–2.430
DH 4-17	27–45	14–30	140-235	2	190–315	2	1,85/2,43	1,7	170 × 177 × 215	2.730–3.050
DH 4-23	32–45	16–30	190–315	2	190–315	2	2,43/3,27	2,3	170 × 177 × 269	3.370–3.770
DH 4-27	36-45*	18–30	240–400	2	=	-	3,02/4,12	2,8	170 × 177 × 315	3.860-4.200

Die Kapazitäten wurden nach der Formel der ISO-Norm 7451 berechnet. Die erste Zahl bezieht sich auf das gestrichene, die zweite auf das 1:1-gehäufte Schaufelvolumen. *Herstellergenehmigung erforderlich

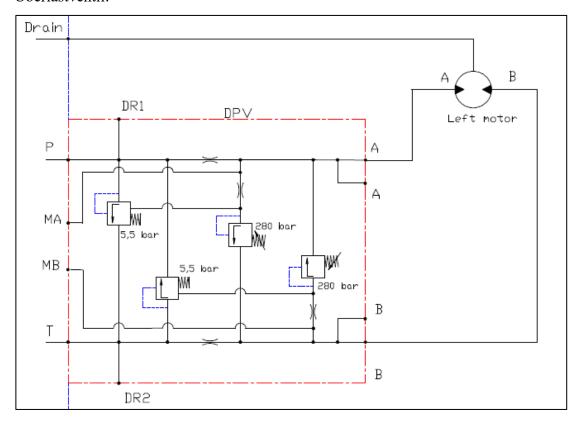
	Max. zulässiges Baggergewicht	Max. zulässiges Radladergewicht
	t	t
DN-Serie	28	14
DS-/DSH-Serie	35	22
DH-Serie	45	30

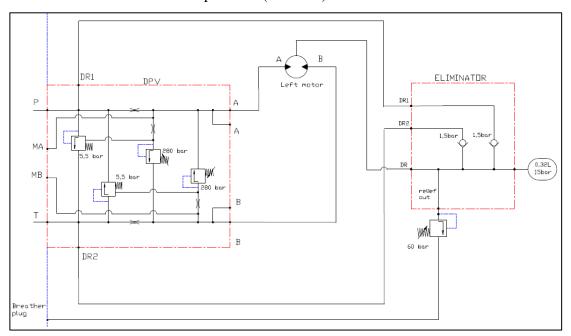

Anmerkungen:

- Das empfohlene Gewicht des Trägergeräts gilt ohne zusätzliche Seiten, einschließlich 300-kg-Adapter.
- Die tatsächliche Kipplast in den technischen Daten des Trägergeräts nachprüfen. Sie kann eine deutliche Abweichung von der Empfehlung erforderlich machen. Bei Anbau an einem Radlader muss die Kipplast ca. 50 % höher sein, als das Gesamtgewicht von Transformer und Material, da der Schwerpunkt höher und weiter hinten liegt, als bei Verwendung eines normalen Löffels.
- Zusätzliche Seiten erhöhen das Volumen um ca. 30 %.
- Bei dem in den Tabellen angegebenen Transformergewicht ist weder Zubehör noch ein Adapter berücksichtigt.
- Gewichte, Abmessungen und andere Angaben sind N\u00e4herungswerte. Die technischen Daten k\u00f6nnen vom Hersteller ohne vorherige Ank\u00fcndigung ge\u00e4ndert werden.
- Der empfohlene Hydraulikfluss gilt für eine Wellendrehzahl von 150–200 U/min.

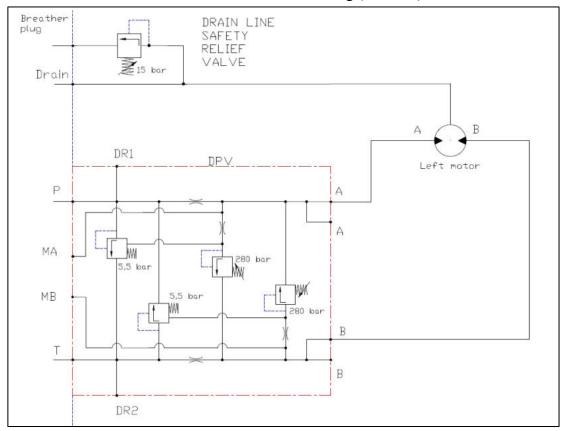
5.4 Hydrauliksystem

5.4.1 Anschluss des Transformers am Hydrauliksystem des Trägergeräts

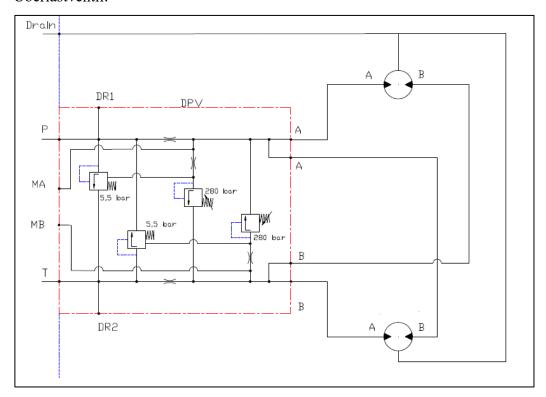

Die schematische Darstellung unten zeigt den Anschluss des Transformers an die Zusatzhydraulik eines Baggers. Für Radlader gilt das gleiche Schema.


- 1. ALLU-Transformer
- 2. Überlastventil des Transformers
- 3. Baggerregelventile
- 4. Regelventil der Baggerzusatzhydraulik
- 5. Rücklauffilter (Leckölleitung kann über einen separaten Filter oder den Rücklauffilter des Trägergeräts angeschlossen werden)
- 6. Hydraulikölkühlung

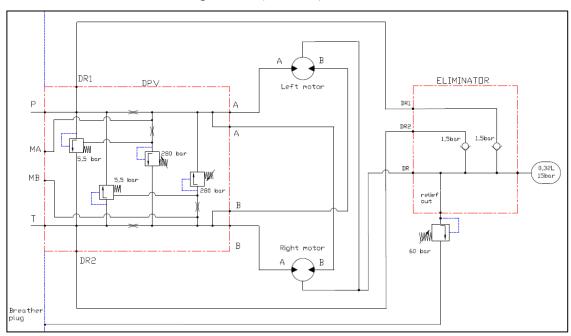
5.4.2 Löffel mit Einzelantrieb


Überlastventil:

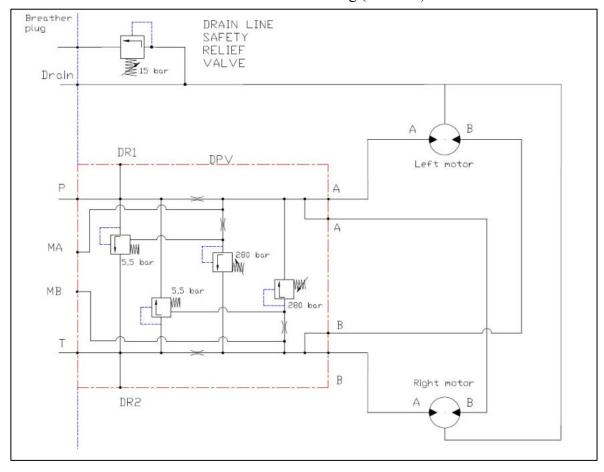
Überlastventil und Leckölkompensator (Zubehör):



Überlastventil und Sicherheitsventil der Leckölleitung (Zubehör):



5.4.3 Löffel mit Doppelantrieb


Überlastventil:

Überlastventil und Leckölkompensator (Zubehör):

Überlastventil und Sicherheitsventil der Leckölleitung (Zubehör):

Schalldruckpegel

Die Angabe der Schalldruckpegel entspricht DIN EN ISO 3746/DIN 45635-1/DIN 45635-

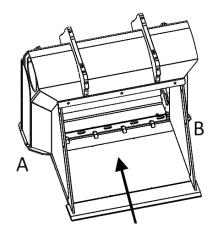
33. Die Messung erfolgte mit einem Transformerlöffel des Modells DN3-12 in den gebräuchlichsten Betriebsanwendungen.

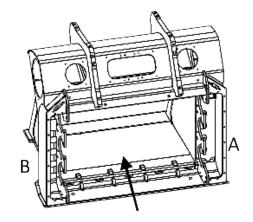
Anwendungsbereich	Abstand $r = 5 \text{ m}$		Abstand <i>r</i> = 7,5 m		Abstand <i>r</i> = 10 m		Abstand <i>r</i> = 20 m	
	L _{pa} [dB(A)]	L _{pC, peak} [dB(C)]						
Separieren von Abbruchabfällen	90	114	87	111	84	109	79	103
Separieren von Stein- /Erdmaterial	85	110	81	107	79	105	73	99
Separieren von Humus	77	107	74	103	71	101	66	95

Anwendungsbereich	L _{pAm,2m} ¹⁾ [dB(A)]	L _{pC,peak,2m} 2) [dB(C)]	L _{WA} ³⁾ [dB(A)]	L _{WA,max} ⁴⁾ [dB(A)]	Kı ⁵⁾ [dB]	K _T ⁶⁾ [dB]	σ ⁷⁾ [dB]
Separieren von Abbruchabfällen	96,3	120,6	112,9	115,4	9,9		1,7
Separieren von Stein- /Erdmaterial	91	116,8	107,6	109,9	4,3		1,4
Separieren von Humus	83,3	113,1	99,9	104	5,5		2,3
Hintergrundgeräusch, fahrbarer Bagger	67,6	90,8	84,2	86,5	0,9		2,2

¹⁾ Durchschnittl. Schalldruckpegel, Messabstand 2 m, über alle Messpunkte gemittelt

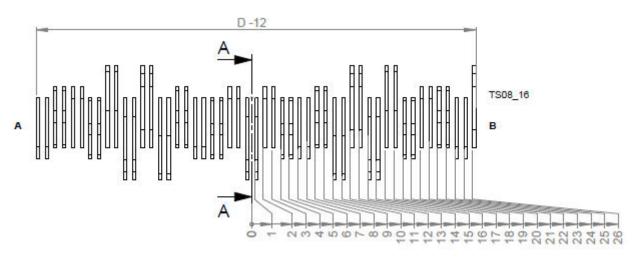
²⁾ Höchster Schalldruckpegel, Messabstand 2 m

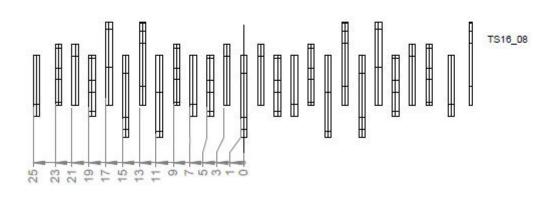

³⁾ Schallleistungspegel

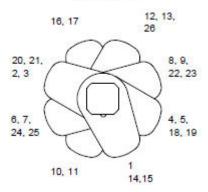

⁴⁾ Schallleistungspegel bei höchstem Schalldruckpegel

⁵⁾ Zusatzwert für Impulshaltigkeit des gemessenen Schalldruckpegels

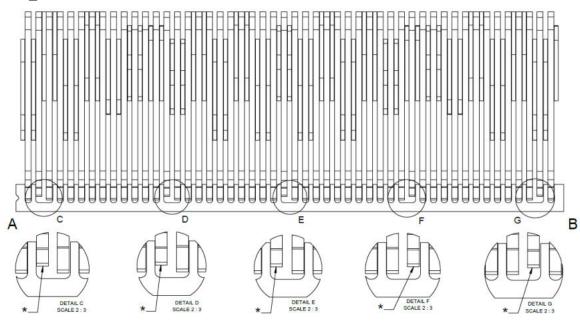
⁶⁾ Zusatzwert für Tonhaltigkeit des gemessenen Schalldruckpegels


1 ANHANG: SCHLEGEL (TS-SERIE)

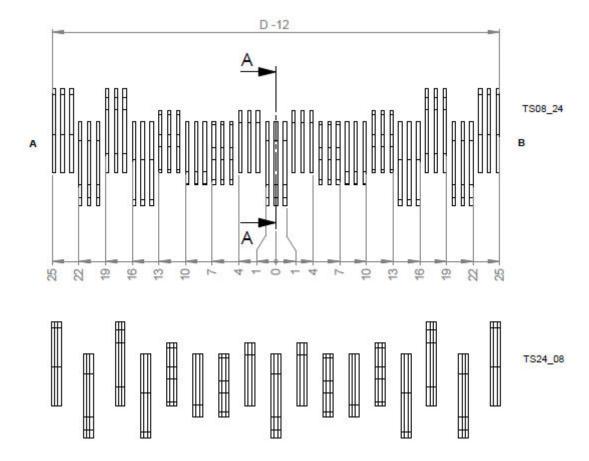


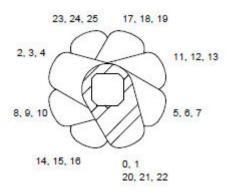

1.1 **D** -12

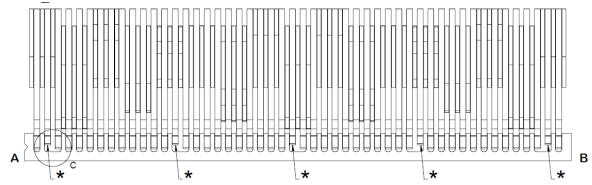
1.1.1 TS08_TS16

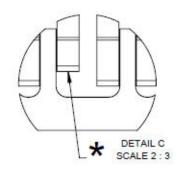



SECTION A-A

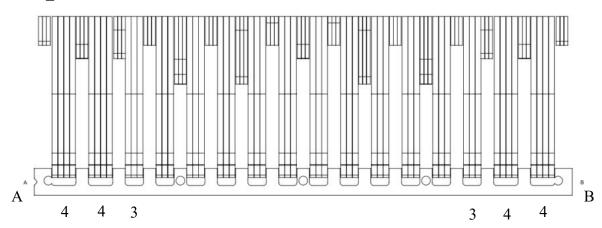

TS08_16


TS16_08

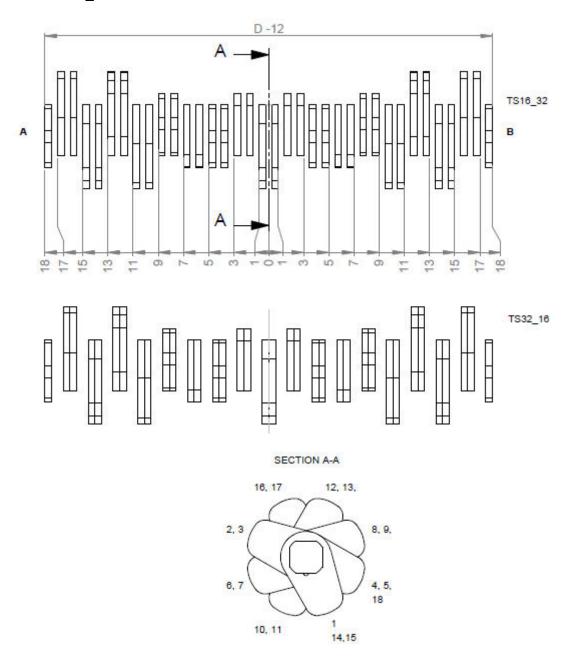

1.1.2 TS08_TS24

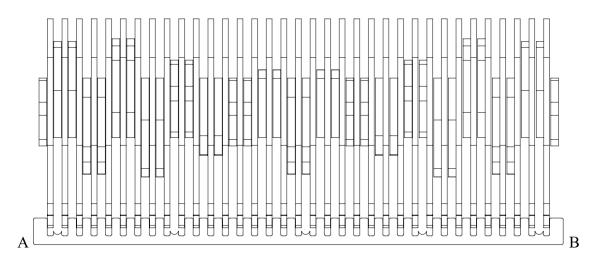


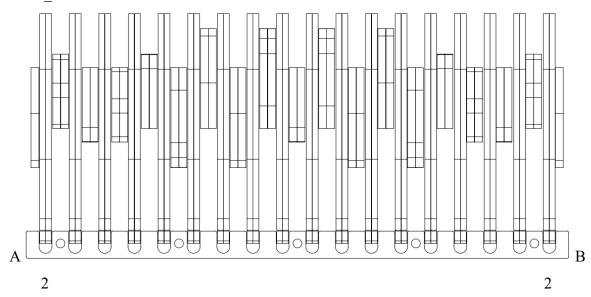
SECTION A-A

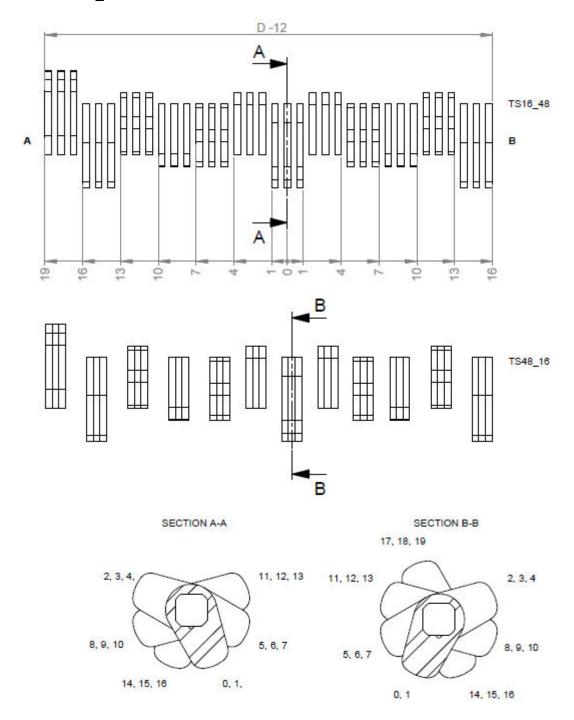


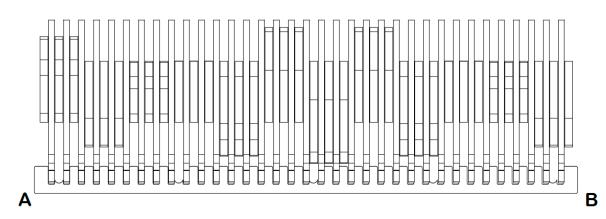
TS08_24

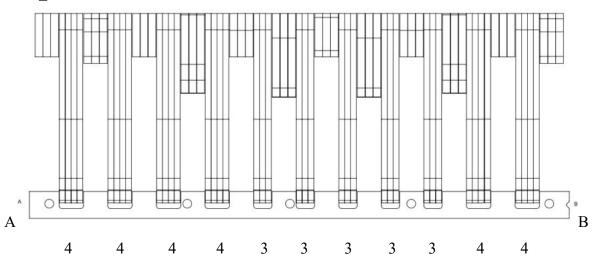


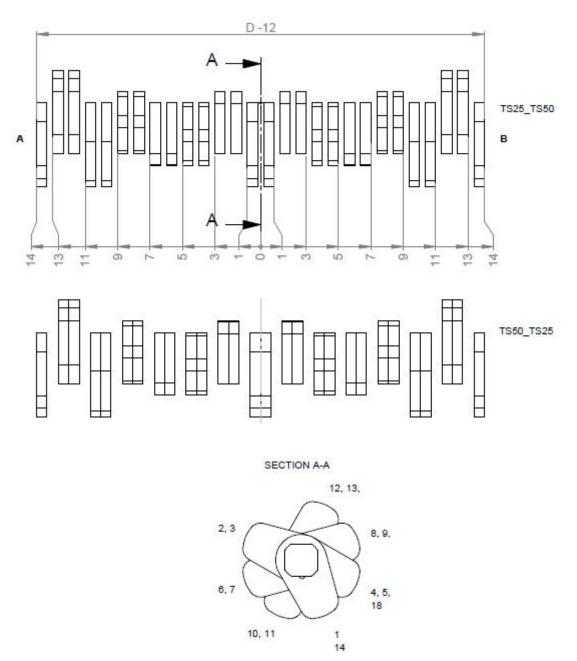

TS24_08

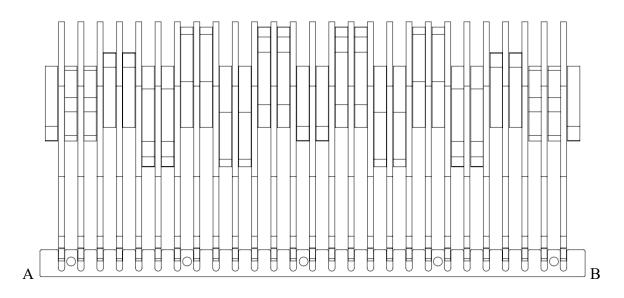

1.1.3 TS16_TS32

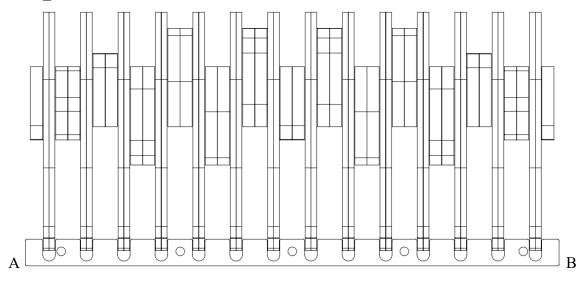

TS16_32


TS32_16

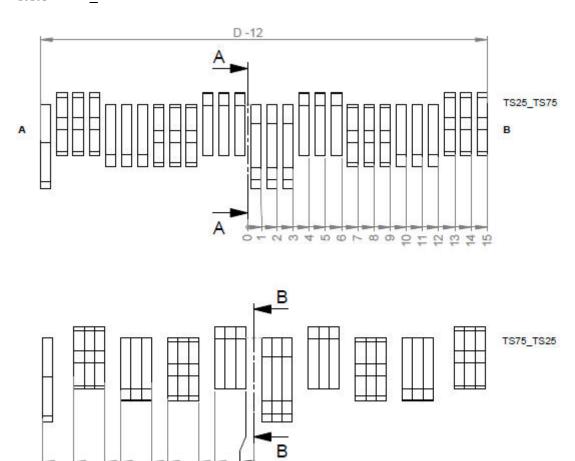

1.1.4 TS16_TS48

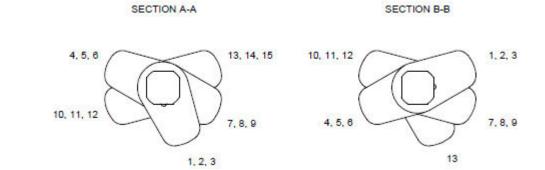

TS16_48


TS48_16

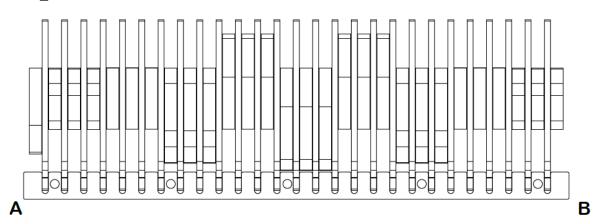

1.1.5 TS25_TS50

TS25_50

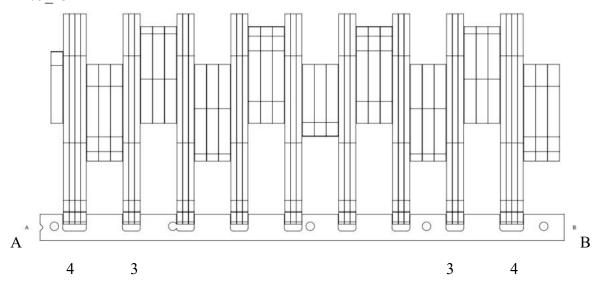


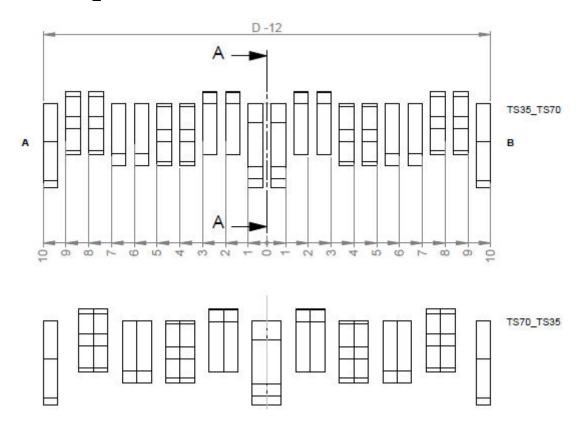


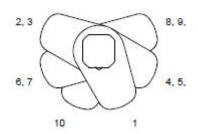
1.1.6 TS25_TS75

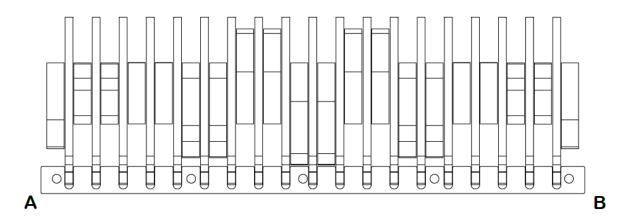

0 0

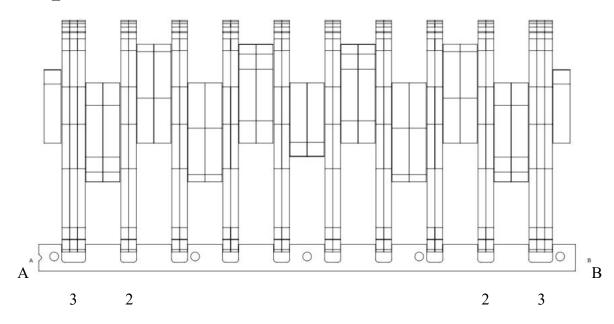
N 0

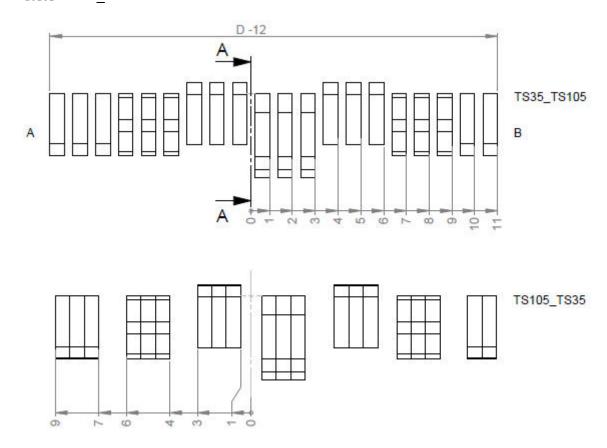



TS25_75

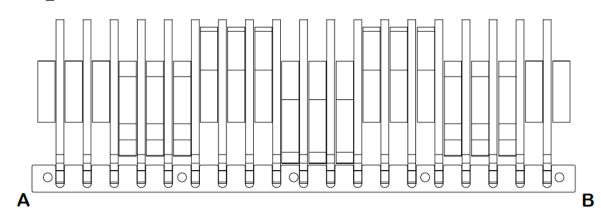

TS75_25

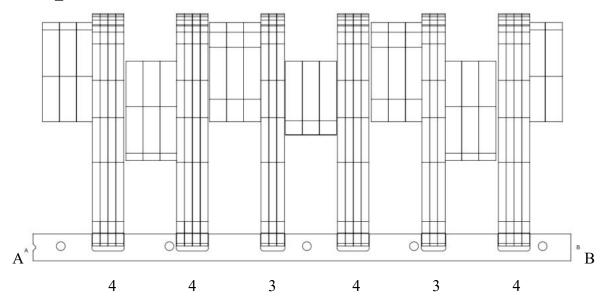

1.1.7 TS35_TS70


SECTION A-A

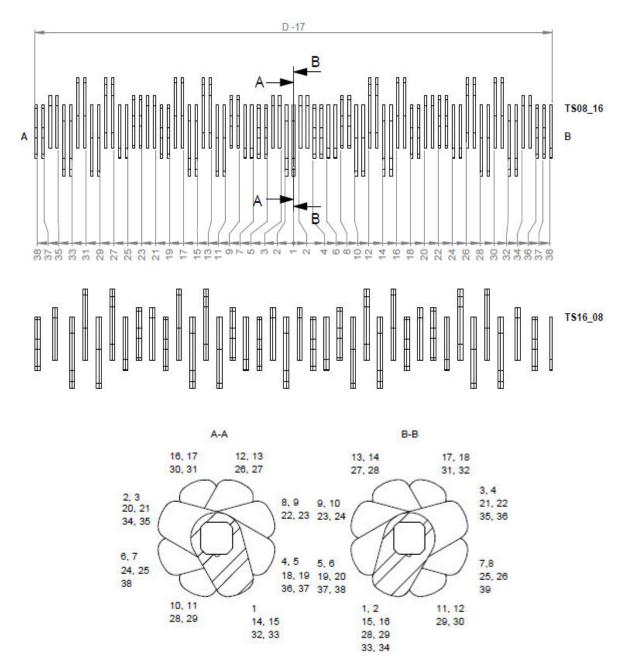

TS35_70

TS70_35

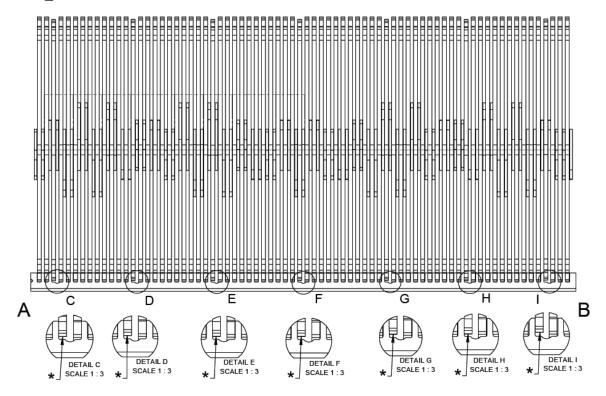

1.1.8 TS35_TS105


SECTION A-A

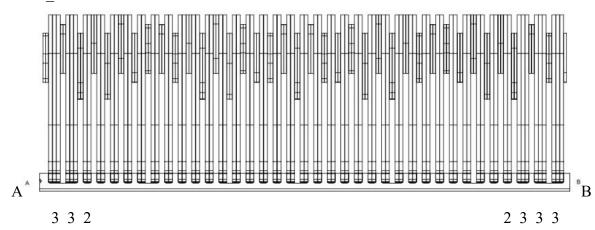
TS35_105

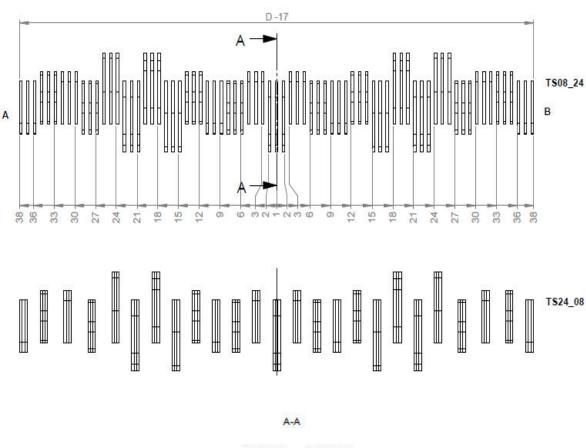


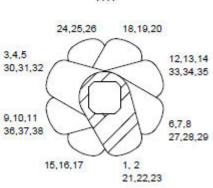
TS105_35



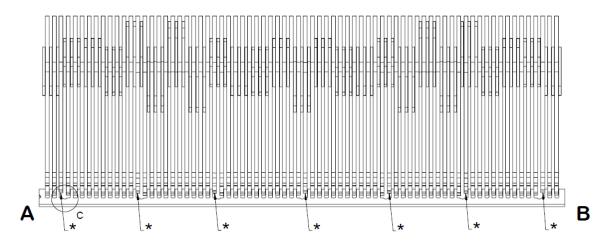
1.2 D-17

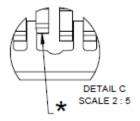

1.2.1 TS08_TS16

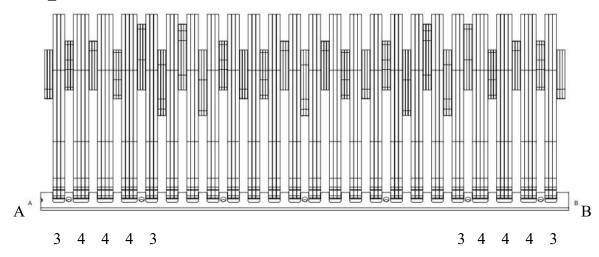

TS08_16



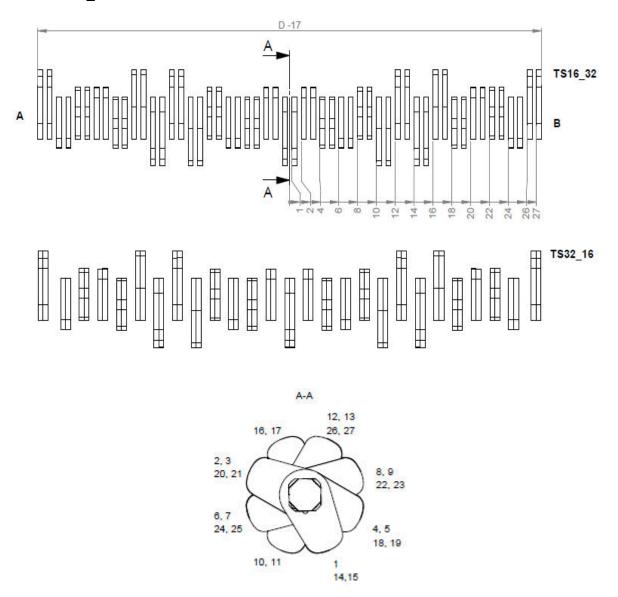
TS16_08

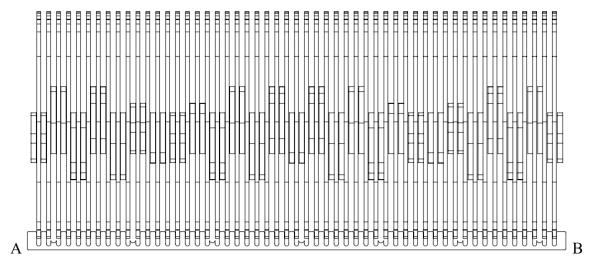


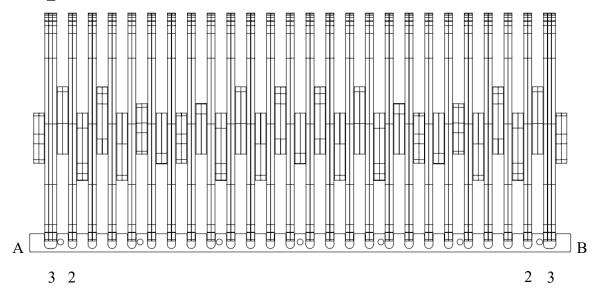

1.2.2 TS08_TS24

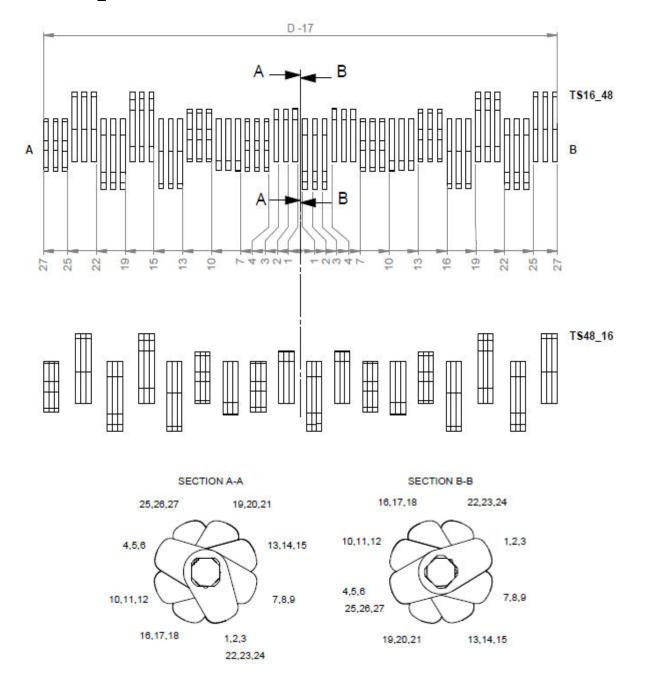


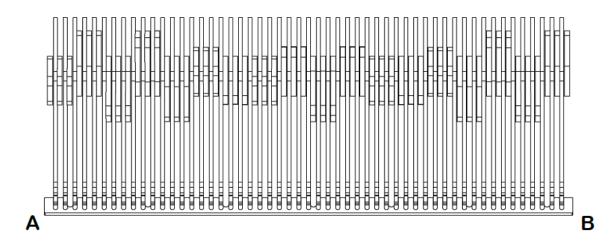
TS08_24

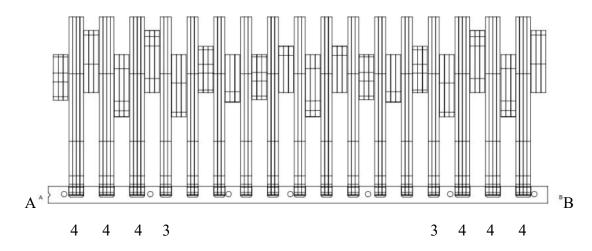


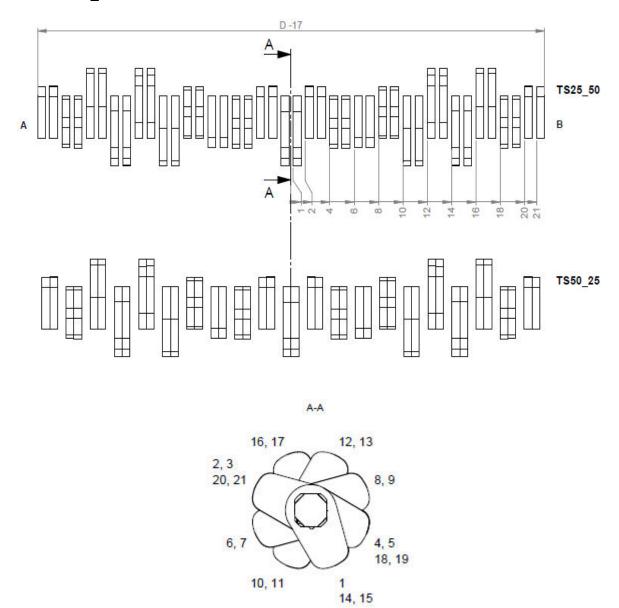

TS24_08

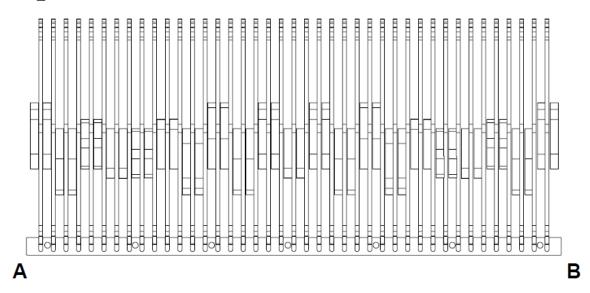

1.2.3 TS16_TS32

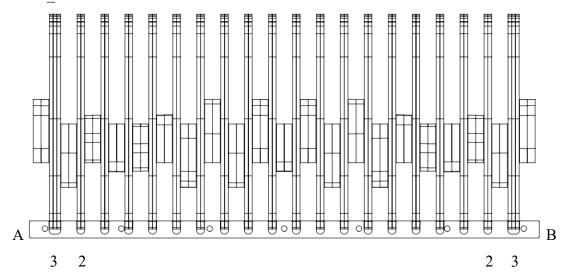


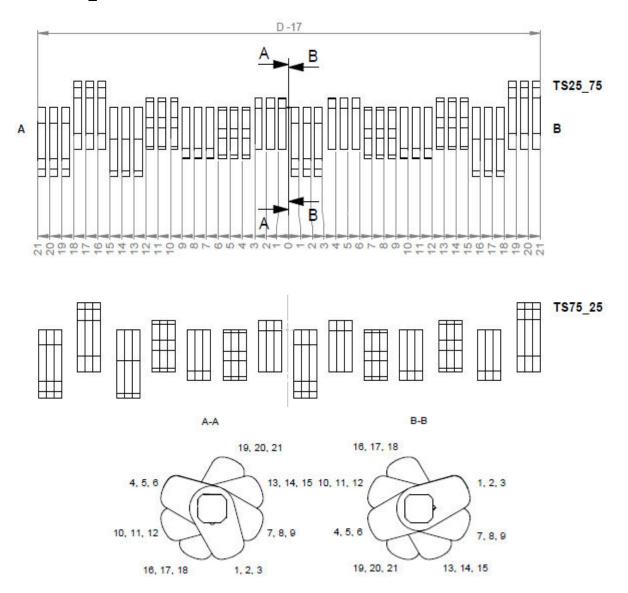

TS32_16

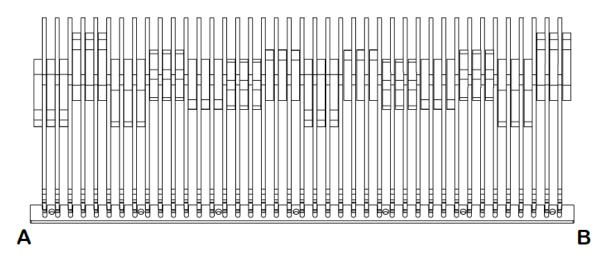

1.2.4 TS16_TS48

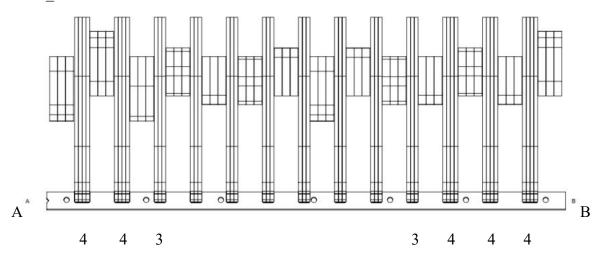

TS16_48

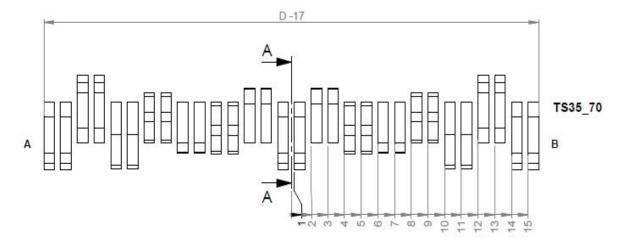

TS48_16

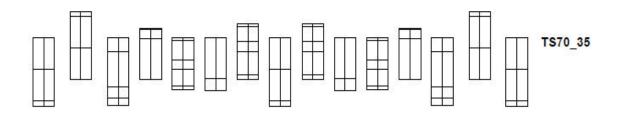

1.2.5 TS25_TS50

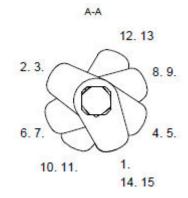

TS25_50

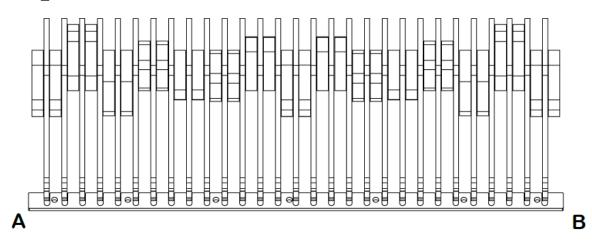

TS50_25

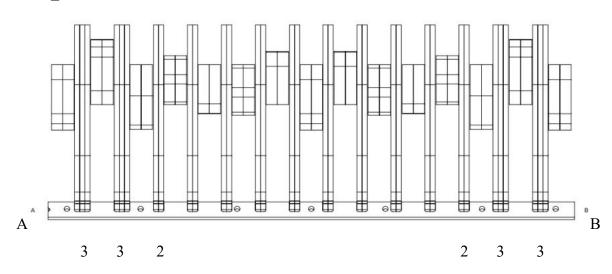

1.2.6 TS25_TS75

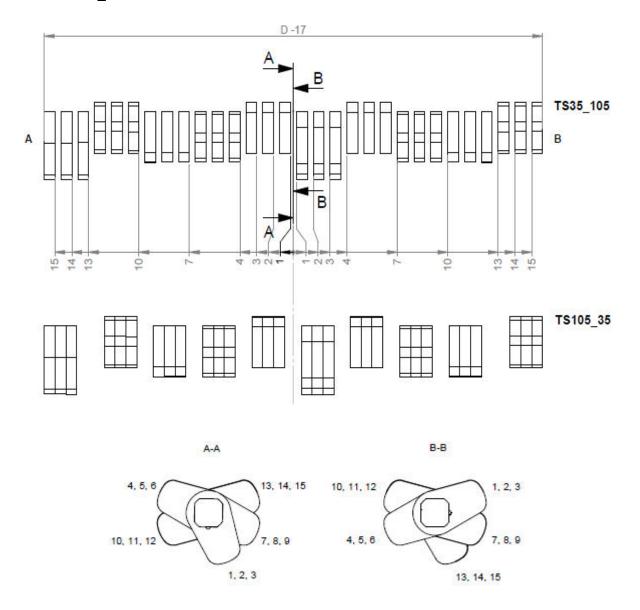

TS25_75

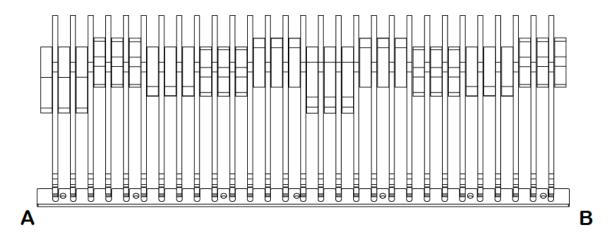


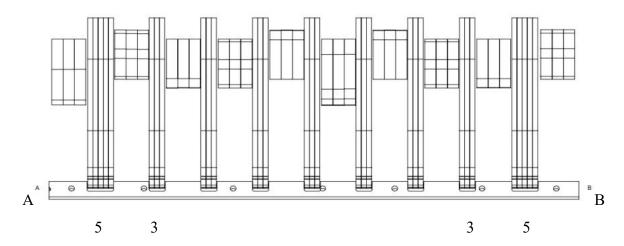

TS75_25


1.2.7 TS35_TS70

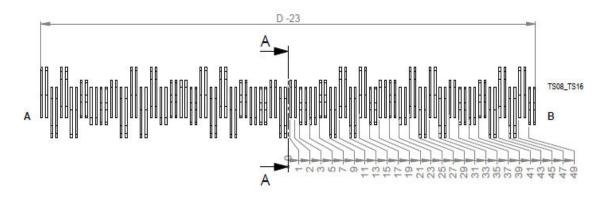


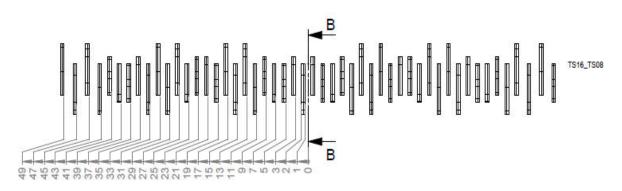

TS35_70

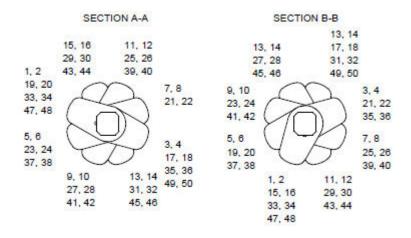

TS70_35


1.2.8 TS35_TS105

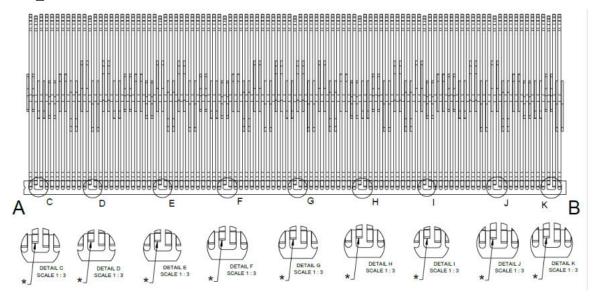
TS35_105

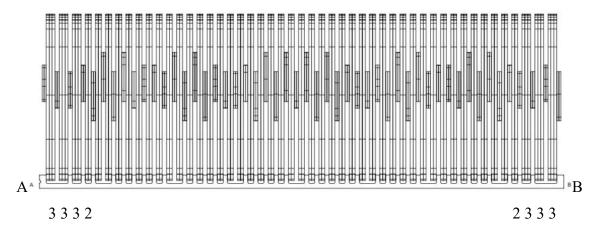


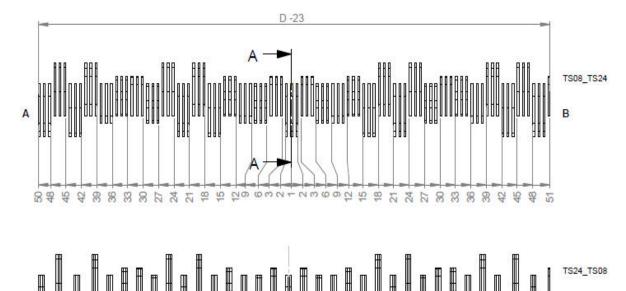

TS105_35

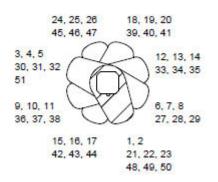


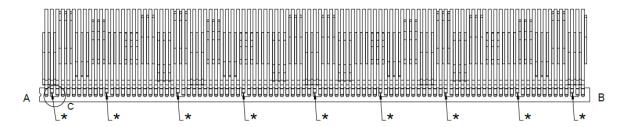
1.3 D -23

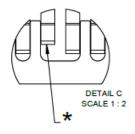

1.3.1 TS08_TS16



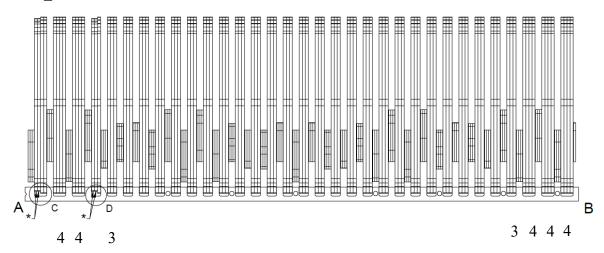

TS08_16

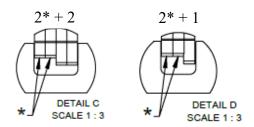

TS16_08

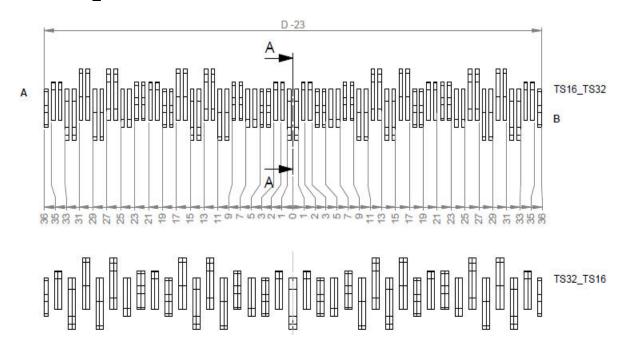

1.3.2 TS08_TS24



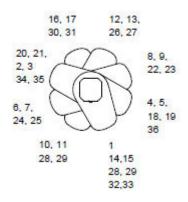
SECTION A-A

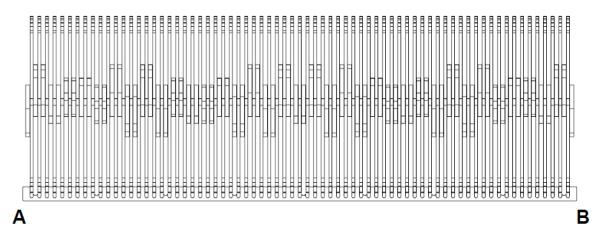


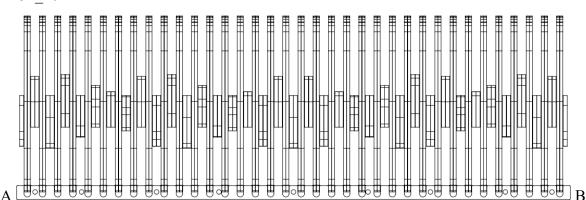

TS08_24

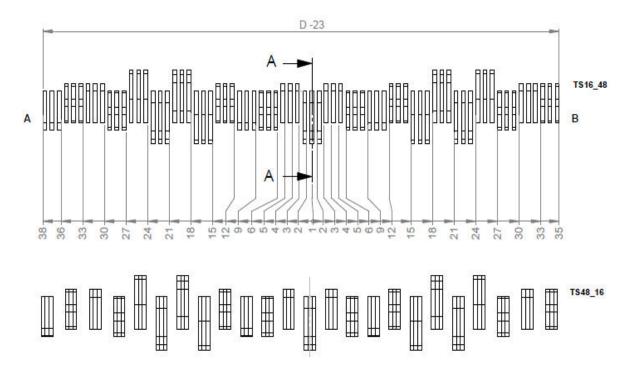


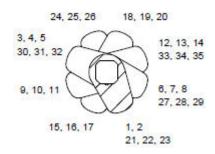
TS24_08

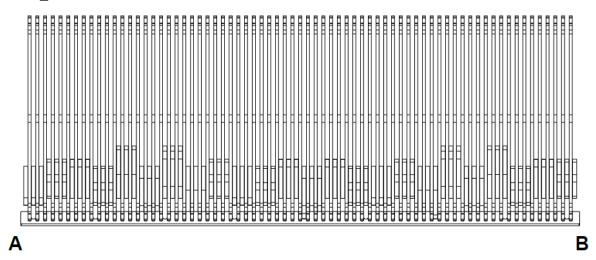


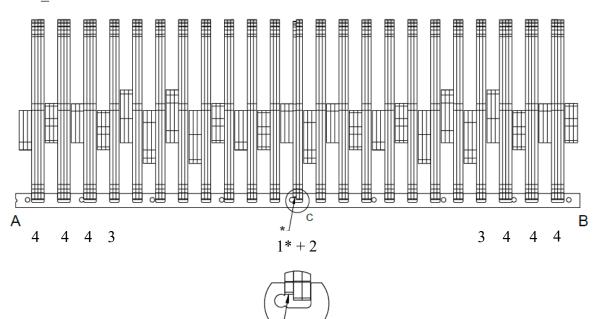

1.3.3 TS16_TS32


SECTION A-A

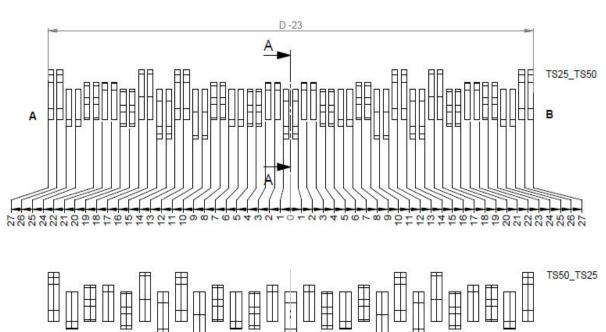

TS16_32

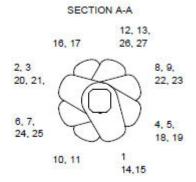

TS32_16

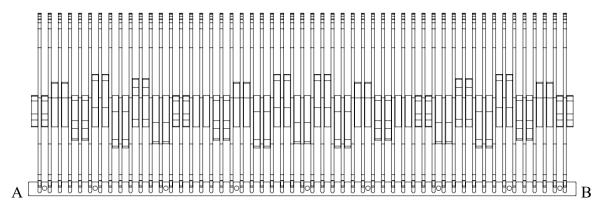

1.3.4 TS16_TS48


SECTION A-A

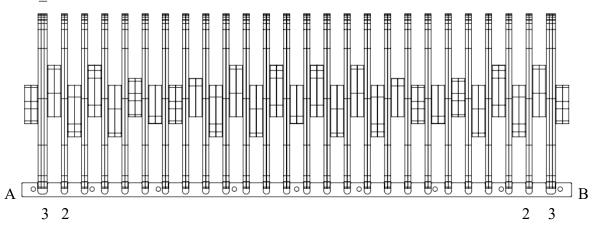
TS16_48

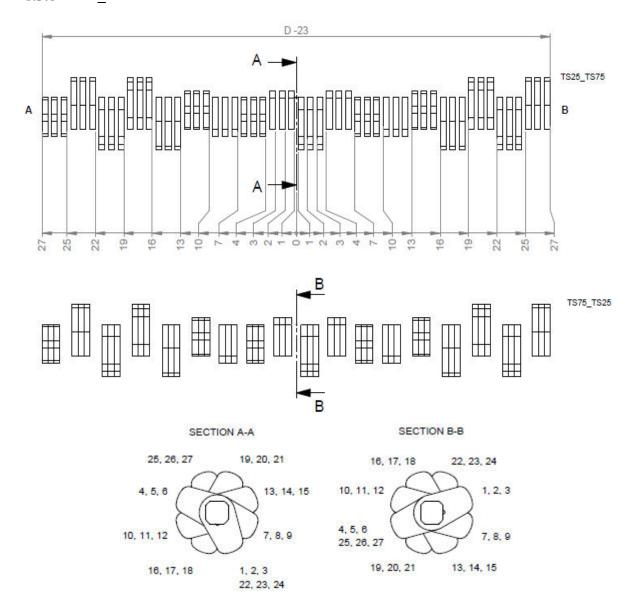


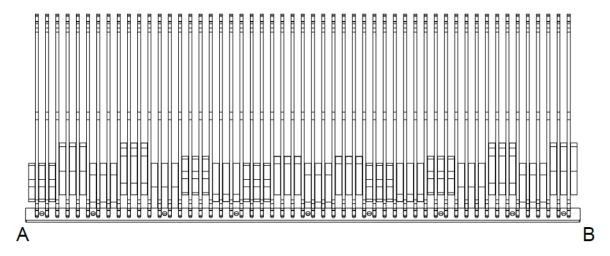

TS48_16

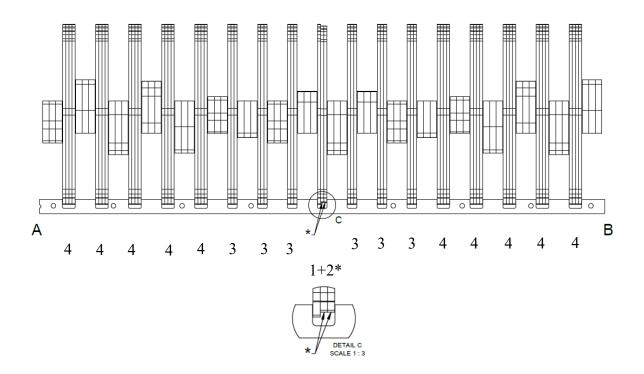

DETAIL C SCALE 1:3

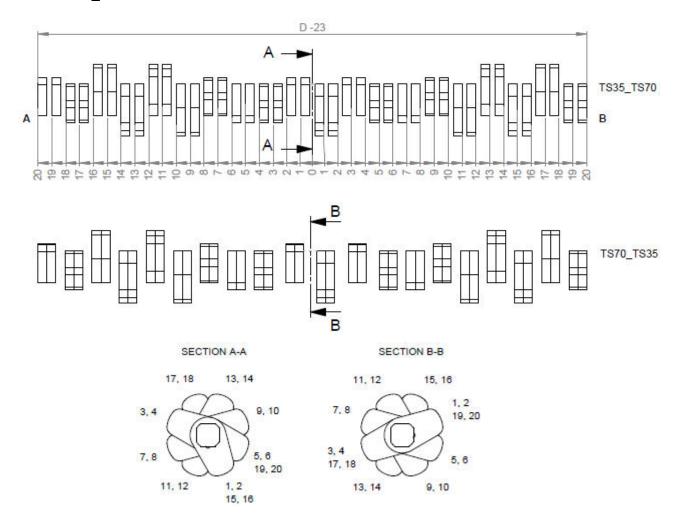
1.3.5 TS25_TS50

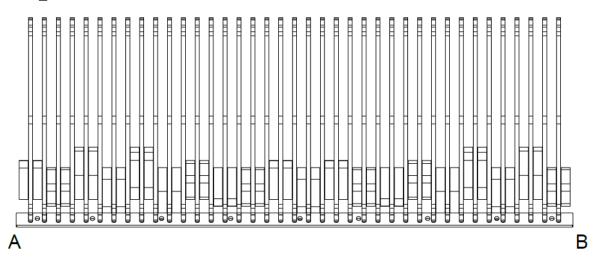


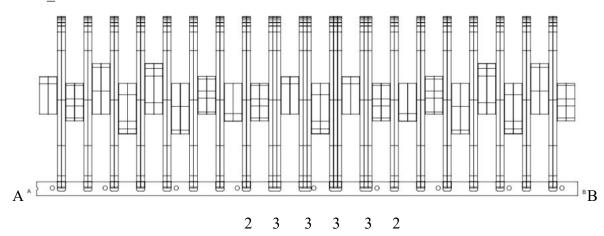


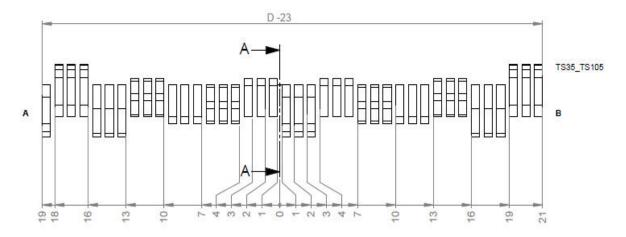


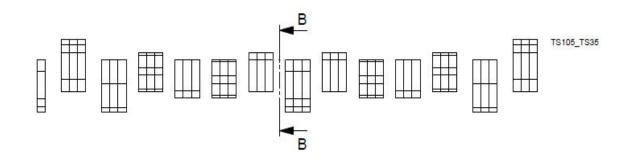

1.3.6 TS25_TS75

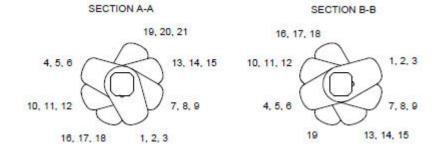

TS25_75

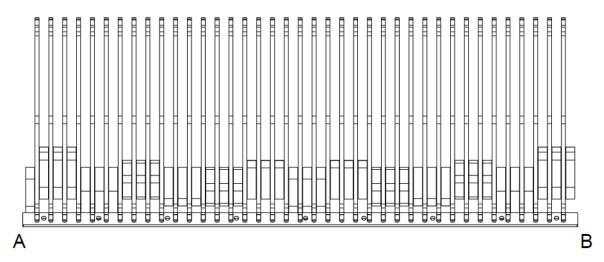

TS75_25

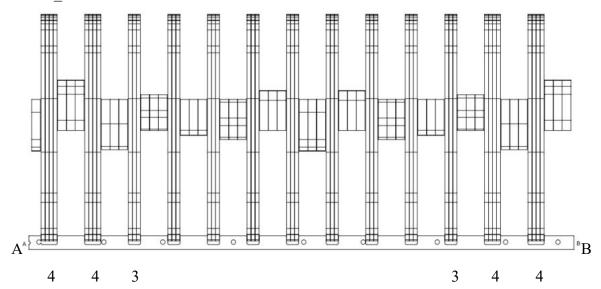

1.3.7 TS35_TS70

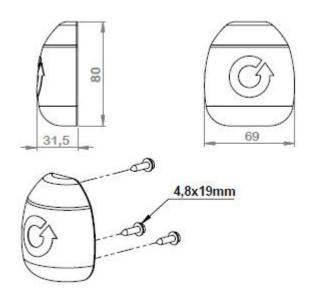

TS35_70




TS70_35


1.3.8 TS35_TS105




TS35_105

TS105_35

2 ANHANG: ALLU-SENSOR – TECHNISCHE DATEN

Element	Technische Daten
	In der Regel 1800 Berichte (bei
Akku-Lebensdauer	1 Bericht pro Tag)
	Lithium-Akku, 2,7
Akku-Typ	Amperestunden, integriert
Temperatur im Betrieb	25–80 °C
Temperatur bei Lagerung	0–50 °C
Netzwerkverbindung	Bluetooth 4
Frequenz	2,4 GHz
	Bewegung, Neigung,
Sensoren	Temperatur
	Betriebsstunden, Temperatur,
Protokollierung	Akku-Ladezustand
Schutzklasse	IP67
ADR	UN3091
Lithium-Gehalt	0,72 g